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Higher Trigonometry, Hyperreal Numbers , 
and Euler's Analysis of Infinities 

M A R K  M C K I N Z I E 
Monroe Commun ity College 

Rochester, NY 14623 

C U R T I S  T U C K E Y  
1217 W. Arthu r  Avenue 

Ch icago, I L  60626 

In a textbook published in 1 748, without the barest mention of the derivative, Euler 
derived the fundamental equations of a subject that was later to become known as 
higher trigonometry: he explained the series for the exponential and logarithmic func
tions, 

x2 x3 
ex = 1 + x  + - + - + . . . 

2 !  3 !  

1 2 1 3 ln( l  + x) = x - 2x + 3x - . . .  , 

proved the Euler identity, 

ei(} = case + i sine, 

computed the series for the sine and cosine, 

x3 xs 
sin x = x - - + - - . . .  

3 !  5 !  

x2 x4 
COS X = 1 - - + - - . . .  

2 !  4 !  
' 

proved the factorization formula for the sine, 

sin x = x ( 1 -
( 1:)2 ) ( 1 -

(2
:

)2 ) ( 1 -
(3
:

) 2 ) · · · , 
and deduced his celebrated formula, 

1 1 1 n2 
1 + 4 + 9 + 

1 6  
+ 0 0 0 = 6' 

among many other facts . The textbook is Euler' s  Introductio in Analysin Infinitorum 
(Introduction to the Analysis of Infinities) .  ''All this follows from ordinary algebra," 
he claimed, and all this in a textbook for beginners ! 

Often I have considered the fact that most of the difficulties which block the 
progress of students trying to learn analysis stem from this :  that although they 
understand little of ordinary algebra, still they attempt this more subtle art. From 
this it follows not only that they remain on the fringes, but in addition they en
tertain strange ideas about the concept of the infinite, which they must try to 
use. Although analysis does not require an exhaustive knowledge of algebra, 
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even of all the algebraic techniques s o  far discovered, still there are topics whose 
consideration prepares a student for a deeper understanding. However, in the 
ordinary treatise on the elements of algebra, these topics are either completely 
omitted or are treated carelessly. For this reason, I am certain that the material 
I have gathered in this book is quite sufficient to remedy that defect. . . .  There 
are many questions which are answered in this work by means of ordinary alge
bra, although they are usually discussed with the aid of analysis. In this way the 
interrelationship between the two methods becomes clear. [12, p. v] 

What is this "ordinary algebra" that Euler spoke of, and how did it allow him to deduce 
results that we now classify as requiring differential calculus? The answer lies here: 
although Euler did not use the notion of the derivative to deduce these results (and 
certainly not theorems like Taylor's  Theorem, which depend on the derivative) his 
notion of ordinary algebra went beyond what most of our contemporaries would in
clude. In particular, Euler explicitly included the arithmetic of infinite and infinitesimal 
quantities, and implicitly used a general principle for simplifying calculations involv
ing infinitely many infinitesimals .  Because of this ,  Euler is often portrayed in popular 
accounts and classroom lectures as a reckless symbol-manipulator, who worked in a 
number system fraught with nonsense and contradiction, but who through sheer intu
itive brilliance somehow came to correct conclusions. The following passages, taken 
from popular books on the history of mathematics, are typical . 

It is perhaps only fair to point out that some of Euler' s  works represent out
standing examples of eighteenth-century fmmalism, or the manipulation, with
out proper attention to matters of convergence and mathematical existence, of 
formulas involving infinite processes . He was incautious in his use of infinite 
series, often applying to them laws valid only for finite sums . Regarding power 
series as polynomials of infinite degree, he heedlessly extended to them well
known properties of finite polynomials .  Frequently, by such careless approaches,  
he luckily obtained truly profound results . . . .  [13,  p .  435] 

Today, we recognize that Euler was not so precise in his use of the infinite as 
he should have been. His belief that finitely generated patterns and formulas 
automatically extend to the infinite case was more a matter of faith than science, 
and subsequent mathematicians would provide scores of examples showing the 
folly of such hasty generalizations. [7, p. 222] 

In contrast we take Euler' s  calculations involving infinite and infinitesimal numbers 
seriously, and find that Euler' s  Introductio is written with grace, wit, and care. There is 
the occasional misstep, but on the whole, Euler' s  use of the infinite and infinitesimal is 
consistent and clear. Furthermore, there is a modern context, replete with infinite and 
infinitesimal numbers, in which Euler' s  methods can be made intelligible, rigorous, 
and useful to modern readers. 

What follows is our own version of Euler' s  mathematical tale, sensitively rehabili
tated to contemporary tastes for rigor. 

Exponentials and logarithms in Euler's lntroductio 
Euler began his introductory chapter on exponentials and logarithms [12, Chap. VI] 
by saying, 
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Although the concept of a transcendental function depends o n  integral calcu
lus, there are certain kinds of functions which are more obvious,  which can be 
conveniently developed, and which open the door to further investigations. 

He went on to explain the usual laws of exponents and logarithms, and illustrated the 
usefulness of tables of logarithms, much as one would in a precalculus course today, 
with examples from business and the life sciences .  

A certain man borrowed 400,000 florins at  the usurious rate of  five percent annual 
interest. Suppose that each year he repays 25,000 florins .  The question is,  how 
long will it be before the debt is repaid completely? . . .  

Since after the flood all men descended from a population of six, if we suppose 
that the population after two hundred years was 1 ,000,000, we would like to find 
the annual rate of growth. 

To demonstrate the usefulness of tables of logarithms, Euler asked, 

If the progression 2, 4, 1 6, 256, . . .  is formed by letting each term be the square 
of the preceding term, find the value of the twenty-fifth term. 

In the succeeding chapter, Euler developed the series for the exponential and loga
rithmic functions, and showed how to use series to compile tables of logarithms. What 
interests us here is the means by which Euler obtained those series. Euler began his 
discussion of the series for the exponential function as follows [12, Chap. VII] : 

Since a0 = 1 ,  when the exponent on a increases, the power itself increases, pro
vided that a is greater than 1 .  It follows that if the exponent is infinitely small 
and positive, then the power also exceeds 1 by an infinitely small amount. Let E 
be an infinitely small number, or, a fraction so small that, although not equal to 0, 
still aE = 1 + 1/f, where 1/f is also an infinitely small number. From the preceding 
chapter we know that unless 1/f were infinitely small, then neither would E be 
infinitely small . It follows that 1/f = E or 1/f > E or 1/f < E. Which of these is true 
depends on the value of a, which is not now known, so we let 1/f = AE . Then we 
have aE = 1 + AE . . . .  [12, § 1 14] 

(We have changed Euler's  w to E and his j, in what follows,  to K.) Euler then reasoned 
that if x is any finite, positive, noninfinitesimal number, and K is xI E, then by a simple 
calculation using the Binomial Theorem (discussed in § 7 1 of the Introductio ), a series 
for ax is given by 

ax = aKE = (aE)K = ( 1 + AE)K = ( 1 + �) K 

1 1 (K - 1 ) 2 2 1 (K - 1 ) (K - 2) 3 3 ::::.:: 1 + -Ax + A x + A x + · · · 
1 1 · 2K 1 · 2K · 3K 

K - 1 1 K - 1 K - 2 1 · 
= 1 + Ax + -- ·  --A2x2 + ---- · A3x3 + . · · . 

K 1 ·2 K K 1 ·2 ·3 

Euler then reasoned that since x is noninfinitesimal and E is infinitesimal, K will nec
essarily be infinite, and hence one may substitute 1 for the fractions 

K;;', Ki2 , 
Ki3 , 

and so on, to obtain 

1 2 2 1 3 3 1 + AX + -A X + -A X + . . . . 
2 !  3 !  
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Finally, Euler examined the case in which the base a i s  taken to correspond to A. being 
equal to unity-the natural exponential function-and showed that in general A. is the 
natural logadthm of a .  

This argument, also discussed b y  Edwards [9, pp. 272-274] and Dunham [8] , 
among others, is a gem of eighteenth-century mathematical reasoning, but there are 
several issues that must be dealt with before something like it could honestly be given 
in a modern context. 

• Euler freely uses the arithmetic of infinite and infinitesimal numbers. If such num
bers are to be used in a modern context, the rules for dealing with them must be 
presented as clearly, concisely, and consistently as the rules for ordinary numbers. 

• Even granted a sound treatment of infinite and infinitesimal numbers, the reasoning 
by which one is allowed to make infinitely many substitutions-the numbers K;;I, 
K ;;2, K ;;3 , and so on, each being replaced by 1 -must be explained. In each substi

tution instance, an error is incurred; for example, the difference between 1 and K;; 1 
is t .  Individually these differences are infinitesimal, but (as Euler was well aware) it 
is possible for infinitely many infinitesimals to add up to a noninfinitesimal amount. 

• The argument as given employs the Binomial Theorem for nonintegral exponents ,  
a theorem that Euler chose not to prove in the Introductio, and something that we 
would hesitate to assume in a modern precalculus course. 

In our rehabilitation of Euler's methods for modern use, we deal with these issues as 
follows .  

• We work in  a consistent axiomatic system that clearly specifies the properties of 
infinite and infinitesimal numbers . 

• We provide a criterion, based on the intuitive notion of determinacy, for deciding 
whether neglecting infinitely many infinitesimals leads to a negligible difference in 
an infinite sum. 

• In our construction of the series for the exponential function, we find that the Bi
nomial Theorem for natural exponents, a theorem that is verified by mathematical 
induction in traditional precalculus courses, suffices. (Later, in connection with the 
series for the logarithm, we give an elementary proof of the Binomial Theorem for 
fractional exponents .)  

Once these issues are dealt with, we will return to Euler's argument and show how it 
can be rigorously rehabilitated in this context. We will then go on to obtain the series 
for the sine, cosine, and logarithm. 

The arithmetic of the infinite and infinitesimal 

The first requirement of our rehabilitation of Euler' s  arguments is that his methods be 
formulated within a mathematical system in which the properties of infinite and in
finitesimal numbers are explained at least as clearly as the properties of the real num
bers . For this we turn to the system of hyperreal numbers, as described axiomatically 
in Keisler's textbook, Calculus: An Infinitesimal Approach [23] . 

In elementary courses ,  the real numbers are not defined explicitly; instead they are 
defined implicitly by their alithmetic properties, an approach that is essentially ax
iomatic. In more advanced courses one builds a model for the real numbers, typically 
using equivalence classes of Cauchy sequences of rational numbers . Similarly, the hy-
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perreal numbers can either be  introduced axiomatically or  by  building a model using 
equivalence classes of sequences of real numbers. 

Keisler's textbook is intended for use in an introductory calculus course. He in
troduces the properties of the hyperreal numbers gradually, with appropriate examples 
and exercises, over the first forty pages of the book. The real numbers are described in
fmmally in the main body of the textbook, but presented more precisely in an appendix 
by citing the field axioms, the order axioms, the definition of the natural numbers, the 
root axiom (that principal nth roots exist for positive numbers), and the completeness 
axiom. Further axioms describe the hyperreal numbers as a field containing infinite and 
infinitesimal numbers in addition to all the real numbers .  (He discusses a set-theoretic 
construction of the hyperreals in his guide for teachers [22] . )  Keisler sets the stage for 
extending the real numbers by reminding students that successive extensions of the 
notion of number have been the milestones of their mathematical educations. 

In grade school and high school mathematics, the real number system is con
structed gradually in several stages .  Beginning with the positive integers, the 
systems of integers, rational numbers, and finally real numbers are built up . . . .  

What is needed [for an understanding of the calculus] is a sharp distinction be
tween numbers which are small enough to be neglected and numbers which 
aren't .  Actually, no real number except zero is small enough to be neglected. 
To get around this difficulty, we take the bold step of introducing a new kind of 
number, which is infinitely small and yet not equal to zero . . . . 

The real line is a subset of the hyperreal line; that is ,  each real number belongs 
to the set of hyperreal numbers. Surrounding each real number r, we introduce 
a collection of hyperreal numbers infinitely close to r. The hyperreal numbers 
infinitely close to zero are called infinitesimals .  The reciprocals of nonzero in
finitesimals are infinite hyperreal numbers. The collection of all hyperreal num
bers satisfies the same algebraic laws as the real numbers . . . .  

We have no way of knowing what a line in physical space is really like. It might 
be like the hyperreal line, the real line, or neither. However, in applications of 
the calculus it is helpful to imagine a line in physical space as a hyperreal line. 
The hyperreal line is, like the real line, a useful mathematical model for a line in 

physical space. [23, pp. 1 ,  24, 25 , 27] 

In the picture of the hyperreal line (FIGURE 1 ) ,  observe that - E ,  0, and 1 /2H are 
infinitesimal ; n: + E is a finite, noninfinitesimal number that is infinitely close to n:; H 

-K 0 

Figure 1 The hyperrea l l i ne 

H H+i ZH I 
E 
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i s  infinite, but infinitely close to H + E; H i s  a finite, noninfinitesimal distance from 
H + 1, and infinitely far from 2H.  

Key computational properties of  the hyperreal numbers are given in  the following 
table. 

RULES FOR INFINITE, FINITE, AND INFINITESIMAL NUMBERS .  Assume 
that E, 8 are infinitesimals; b, c are hyperreal numbers that are finite but not 
infinitesimal; H, K are infinite hyperreal numbers; and n is a finite natural 
number. 

• Real numbers. The only infinitesimal real number is 0. Every real number 
is finite. 

• Negatives .  -E is infinitesimal; -b is finite but not infinitesimal; - H is 
infinite. 

• Reciprocals .  If E f. 0, then 1 IE is infinite; 1 I b is finite but not infinitesi
mal; 11 H is infinitesimal. Note that 110 remains undefined. 

• Sums . E + 8 is infinitesimal; b + E is finite but not infinitesimal; b + c is 
finite (possibly infinitesimal); H + E and H + b are infinite. 

• Products .  8 · E and b · E are infinitesimal; b · c is finite but not infinitesi
mal; H · b and H · K are infinite. 

• Quotients. E lb, E I H, and b I H are infinitesimal; b I c is finite but not in
finitesimal; b IE, HIE, and HI b are infinite, provided that E f. 0. 

• Powers. E" is infinitesimal; b" is finite but not infinitesimal; H" is infinite. 
• Roots. If E > 0 then !fE is infinitesimal; if b > 0 then ,;:Jb is finite but not 

infinitesimal; if H > 0 then .::./H is infinite. 

Notice that there are no general rules for deciding whether the combinations 
E I 8, HI K, HE, and H + K, are infinitesimal, finite, or infinite. 

DEFINITION.  We write x c:::: y to mean that x - y is infinitesimal . If x c:::: y ,  we say 
that x is infinitely close to y .  

Keisler's entire course i s  based on three fundamental principles relating the real and 
hyperreal numbers : the Extension Principle, the Transfer Principle, and the Standard 
Part Principle. The Extension Principle posits the existence of nonzero infinitesimals 
in the hyperreal field, and for each real function f, a function * f extending f to the 
hyperreal numbers. The function* f is called the hyperreal extension of f. (A function 
is a set of ordered pairs such that no two pairs have the same first element and different 
second elements. Iff and g are functions, then by "g extends f "  or "g is an extension 
of f" we mean that f is a subset of g . A real function of one variable is a function in 
which the domain and range are sets of real numbers .  A real function of n variables is 
a function in which the domain is a set of n-tuples of real numbers and the range is a 
set of real numbers.) The Transfer Principle says that every real statement that holds 
for a particular real function holds for its hyperreal extension as well . Equations and 
inequalities are examples of real statements. 

Here are seven examples that illustrate what we mean by a real statement . . . .  
(1) Closure law for addition: for any x and y , the sum x + y is defined. (2) Com
mutative law for addition: x + y = y + x . (3) A rule for order: If 0 < x < y 
then 0 < 1 I y < 1 I x .  ( 4) Division by zero is never allowed: x 10 is undefined. 

(5) An algebraic identity : (x - y)2 = x2 - 2xy + y2 • (6) A trigonometric iden-
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tity : sin2 x + cos2 x = 1 . (7) A rule for logarithms :  If x > 0 and y > 0 then 
log10 (xy) = log10 x + log10 y . [23, pp. 28-29] 

(Keisler later gives a precise characterization of the real statements [23, p. 907] . ) A 
consequence of the Transfer Principle is that one does not ordinarily need to distin
guish between * f and f, since any real statement true of one of these functions will 
be true of the other: for simplicity we use the same function symbol f for both * f 
and f.  Finally, the Standard Part Principle says that every finite hyperreal number is 
infinitely close to exactly one real number; this principle is useful for translating results 
about finite hyperreal quantities into equivalent statements about real quantities. 

In our development, which emphasizes discrete mathematics, the natural numbers 
play a larger role than they do in most presentations of the calculus .  Key properties of 
the natural numbers are that they contain 0 and 1 ,  are closed under + and · ,  and that 
they satisfy the Natural Induction Principle (also known as the Principle of Mathemat
ical Induction). For example, the binomial formula, 

n (n - 1 ) 
(a + b)" = a" + na"-1b + a"-2b2 + · · .  + b" , 

2 

for all real a ,  b and all natural n ,  and the geometric sum formula, 

1 -a"+' 
--- = 1 + a  + a2 + · · · + a11 , 

1 - a 

for all a except 1 and all natural n , are often proved by induction. We will only require 
the Natural Induction Principle for equations and inequalities. In the following, a real 
sequence is a real function in which the domain is the set of natural numbers. 

NATURAL INDUCTION PRINCIPLE.  Let </J (n) be an equation or inequality of real 
sequences; that is, let </J (n) be of the form a" = b11 ,  a" i= bn, a" < b11 ,  or a" :S b,, 
where a and b are real sequences. If¢ (0) holds and if for all natural m, we have that 

¢ (m + 1 ) holds whenever¢ (m) holds, then ¢ (n) holds for all natural n. 

Another important tool is the Principle of Definition by Recursion, which says that 
one may define a real sequence by specifying its value at 0, and specifying for each 
natural n its value at n + 1 as determined by its value at n .  (See [2] for an elementary 
discussion of recursion schemes and their solutions .)  For example, the factorial-power 
function, 

x!!. = x (x - 1 ) (x - 2) · · · (x - n + 1 ) , 

n factors 

is defined for all natural n by the equations, 

xQ = 1 , x"+' = x!!. · (x - n) . 

A real series is a real sequence of partial sums a0, a0 + a1 , a0 + a1 + a2, . . .  , where 
a is a real sequence; we use the notation a0 + a1 + a2 + ···to denote this series. Real 
series are defined more formally by recursion. For example, the sum of the first n 
square numbers is defined for all natural n by the equations 

So = 0, Sn+J = S11 + (n + 1 )2 . 

The integers are defined to be the natural numbers together with their negatives .  An 
important function from the real numbers to the integers is the greatest-integer func-
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tion, where LxJ i s  the greatest integer less than or equal to x .  Following Keisler's pre
sentation, we define the hyperintegers to be the range of * L J. The hypernatural num
bers are defined to be the nonnegative hyperintegers. They extend the natural numbers 
to include infinite elements that satisfy the same real statements (such as the recursive 
definitions of addition and multiplication) as the ordinary, finite natural numbers. 

There are several ways of defining hypersequences having hypematural indices and 
hyperreal values . The simplest way is to start with any real sequence s and take its 
hyperreal extension, * s .  By the Transfer Principle, * S11 = s 11 for all finite n , but* sN has 
new, hyperreal values for infinite N. 

Example: 0, 1 , 4, 9, 1 6, . . .  , N2, . • .  (N hypematural) .  1ft is the sequenceO, 1 , 4, 9,  
1 6, . . .  , n2, • • .  (n  natural), then *tis 0, 1 , 4,  9,  1 6, . . .  , N2, • . •  (N hypernatural) .  In 
terms of sets, tis {(n, n2) : n natural} and *tis {(N, N2) :  N hypematural}. 

Example: 0, 1 , 5, 14, 30, . . .  , (02 + 1 2 + 22 + 32 + . . .  + N2),  . • .  (N hypernatu
ral) .  If s is the real series (sequence of partial sums) defined on the natural numbers 
by s0 = 0, sn+ I = s 11 + (n + 1 )2 , then by the Extension Principle *s is defined on the 
hypematural numbers, and by the Transfer Principle *s satisfies the same real state

ments as s-in particular, the same recursion equations. Thus sN , also written L�=O n2 

or even 02 + 1 2 + 22 + 32 · · · + N2 , makes sense for infinite as well as finite N. 

More generally, one may start with a real function of one or more variables, take its 
hypeiTeal extension, and then substitute hypeiTeal values for some of its arguments .  

Example: 

K - 1 A2 K - 1 K - 2 1 A , � · 1 · 2' � · � · 1 · 2 · 3' . . .. 
These are the coefficients of the binomial expansion of ( 1  + (A.xj K))K, which Euler 
used in his construction of the series for ax . These terms are given by 

where A and K are fixed hypeiTeal numbers and n ranges over the hypernatural num
bers . The hypeiTeal function f3 arises from the three-argument real function b defined 
by 

kill" 
b (k l n) = --, 

' k" n! 

by fixing K and A and setting {311 = * b (  K, A , n) for all hypematural n . 

DEFINITION.  A hypersequence is any function defined on the hypernatural num
bers by composing the hypeiTeal extensions of real functions of one or more variables 
and allowing hypeiTeal arguments . A hyperseries is the hypersequence of partial sums 
of a hypersequence. We often use the term series to refer to either a real series or a 
hyperseries. 

By the Transfer Principle one can extend the binomial formula and the geometric sum 
formula to hypeiTeal terms and hypernatural exponents. 

B INOMIAL THEOREM . For all hyperreal a, b, and all hypernatural n, 
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GEOMETRIC SUM THEOREM . For all hyperreal a except unity and all hypernatu
ral n, 

1 _ an+l n 
--- = L ak = 1 + a +  a2 + · . · + a" . 

1 - a  k=O 

Hypersequences are examples of the internal sequences of Robinson's  theory ; see [21 ,  
pp .  94ff ] .  Because of the special role of hypersequences in our exposition, we will find 
it convenient to assume one further principle. 

HYPERNATURAL INDUCTION PRINCIPLE.  Let f/J(n) be an equation or inequal
ity of hypersequences; that is, let f/J(n) be of the form an = b11, a" i= bn, a" < bn, or 
an :::=: b11 ,  where a and b are hypersequences. If fjJ (0) holds and if for all hypernatu
ral m, we have that f/J(riz + 1) holds whenever f/J(m) holds, then f/J(n) holds for all 
hypernatural n.  

In more advanced treatments, the Hypernatural Induction Principle can be seen to 
follow from the Natural Induction Principle and a version of the Transfer Principle 
that takes into account statements involving quantifiers , in addition to the (quantifier
free) real statements . 

Sullivan, in her article in the American Mathematical Monthly [44] , provides ev
idence that elementary calculus can be effectively taught to high school and college 
students using Keisler's system of hyperreal numbers. A recent reform-calculus book 
that uses infinitesimal methods is Stroyan's  Calculus using Mathematica [42] . Inter
ested readers might also consult Luxemburg's  article in the Monthly [32] , Lightstone's  
articles in  the Monthly [30] and this MAGAZINE [31] ,  Davis and Hersh's "Nonstandard 
analysis" in Scientific American [6] , Simpson's  article from the Mathematical Intelli
gencer [41] , and Henle and Kleinberg's  slender volume, Infinitesimal Calculus [18] . 
For more advanced treatments, see [40] , [43] , or [21] . Keisler's article [24] contains a 
brief history of infinitesimals .  For a nonstandard connection between Euler's mathe
matics and modern functional analysis, see [ 45] . 

Determinate series 

Much of the Introductio concerns the expansion of well-known functions into series: 

Since both rational functions and irrational functions of x are not of the form of 
polynomials A +  Bx + Cx2 + Dx3 + · · · , where the number of terms is finite, 
we are accustomed to seek expressions of this type with an infinite number of 
terms which give the value of the rational or irrational function. Even the nature 
of a transcendental function seems to be better understood when it is expressed in 
this form, even though it is an infinite expression. Since the nature of polynomial 
functions is very well understood, if other functions can be expressed by different 
powers of x in such a way that they are put in the form A +  Bx + Cx2 + Dx3 + 
· · · , then they seem to be in the best form for the mind to grasp their nature, even 
though the number of terms is infinite. [12, §59] 

Implicit in this statement is the assumption that "infinite polynomials" share well
known properties of finite polynomials .  In our rehabilitation of Euler's methods, the 
polynomials with an infinite number of terms become polynomials of infinite hyper
natural degree: a0 + a 1x + a2x2 + · · · + aNxN , where N is an infinite hypernatural 
number. By the Transfer Principle, such hyperreal polynomials satisfy the same real 
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statements as real polynomials of finite degree, and in particular can be algebraically 
manipulated according to the usual rules .  Hyperreal polynomials cannot provide ex
act expressions for nonpolynomial real functions, but the extension to the hyperreals 
does present the opportunity for approximating a real function to within infinitesimal 
error-and for most practical purposes this is close enough. In our rehabilitation of 
Euler's  methods, the goal of expressing a real function as a polynomial with an infinite 
number of terms becomes: for a real function f, to find a hypersequence a and an 
infinite hypernatural N such that for all real x (or for all real x in some range), 

f (x):::::: ao + a,x + a2x2 + · · · + aNxN. 

It would be computationally inconvenient if the value of a0 + a1 x + a2x2 + · · · + 
aNxN were to depend perceptibly on the particular infinite value of N. Therefore we 
give special consideration to series that are determinate in the sense that once one has 
taken the summation to an infinite number of terms, the contribution made by adding 
still more terms is infinitesimal. 

Euler did not discuss the notion of determinacy in the Introductio or anywhere 
else-with one exception. In a paper on harmonic series presented in 1734, Euler stated 
a principle which may be read as follows :  ''A series that has a finite sum when contin
ued infinitely will receive insignificant growth even if it is continued further; in fact, 
that which is added after infinitely many terms will be infinitely small ." (Series, quae 
infinitum continuata summum habet finitam, etiamsi ea duplo longius continuetur, nul
lum accipiet augmentum, sed id, quod post infinitum adiicitur cogitatione, re vera erit 
infinite parvum. [11 ,  §2] ) He used this principle to show that a harmonic series 

c c c c 
- + -- + -- + -- + . . . 
a a + b a + 2b a + 3b 

does not have a finite sum, but that series such as 

c c c c 
- + -- + -- + -- + "· 
a a + b a + 4b a + 9b 

and in general series whose nth term is cj(a + nab),  a > 1, do have finite sums . (In 
all of these cases, the assumption that a, b, and care positive is implicit.) Because of 
its essential use of infinite and infinitesimal numbers, we find it worthwhile to recount 
Euler's argument that the harmonic series is not determinate [11 ,  §3] : 

Let the series cja, cj(a + b), cj(a + 2b) , etc . ,  be continued infinitely to the 
infinitesimal term cj(a + (i - 1)b) , where i denotes an infinite number, the in
dex of this term. Now if this series is continued from the next term cj(a + i b) 
through the nith term cj(a + (ni - 1)b) , the number of these added terms is 
(n - l ) i .  The sum of these terms is less than 

and greater than 

(n - 1) i c  
a + ib ' 

(n - 1) i c  
a +  (ni - l)b  

Since i i s  infinitely large, a is negligible in  each denominator; thus the sum is 
greater than 

(n - l )c  
nb  
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and less than 

(n - 1)c 
b 

3 4 9  

Note the salient features of  this argument. The number i is explicitly taken to  be  infi
nite, and a sum of i terms is taken, terminating with cj(a + (i - l )b) . After summing 
these infinitely many terms there is a next term, cj(a + i b) .  A tail sum is taken of the 
next (n - 1)i terms, and a lower bound is obtained for this tail sum using ordinary 
algebra, which can then be simplified because aj i is infinitesimal: 

(n - 1) i c  (n - 1)c 
a +  (ni - l)b  aj i + (n  - 1/ i )b  

(n - 1)c 
nb 

For example, if we take n = 2 (continuing the sum twice as far), we have a tail sum 
that is greater than or infinitely close to cj2b, and hence not infinitesimal. Therefore 
the series is not determinate. 

What does the notion of determinacy have to do with the Introductio? Euler' s  tech
niques for expanding functions into series depend at various points on the negligibility 
of infinitely many infinitesimals in an infinite sum. There are easy examples to the 
contrary (arising, for example, in the computation of areas as infinite sums of infinites
imal rectangles) so to be rigorous, one must have a criterion for deciding when one 
can neglect infinitesimals in an infinite sum. The notion of determinacy provides such 
a criterion. 

DEFINITION OF DETERMINACY. A hypersequence s0, s 1 , s2 , • • .  is said to be deter
minate iff sM ::::: sN for all infinite M and N. If ao, a 1 , az, . . . is a hypersequence, then 
a series a0 + a 1 + a2 + · · · is said to be determinate iff the hypersequence of partial 
sums defined by sn = ao + a1 + az + ··· + an is determinate. 

The following theorem says that one can neglect infinitely many infinitesimals in an 
infinite sum provided the relevant series are both determinate. 

SUMMATION COMPARISON THEOREM . If the series ao + a 1 + a2 + ··· and b0 + 
b 1 + b2 + · · · are determinate, and if for each natural n, a" ::::: bn, then for all hyper
natural n, ao + a 1 + · · · + an ::::: bo + b 1 + · · · + bn. 

We will postpone the proof of this theorem to a later section. As an example of a 
determinate series we verify that a geometric series 1 + x + x2 + · · · is determinate 
for certain values of x .  Let x be a hyperreal number such that lxl < 1 and lxl 't 1, 
and let J and K be infinite hypernatural numbers with K > J. Then by the Geometric 
Sum Theorem, x1 + · · · + xK = (x1 - xK+1 )j(l - x) .  This is infinitesimal because 
both x1 and xK+I are infinitesimal and 1/ (1 - x) is finite. 

The following theorem contains two general tests for determinacy. The proof is left 
to the reader. 

COMPARIS ON TEST FOR DETERMINACY. (i) Let a0 , a 1 , a2 , . . •  and bo, b 1 , bz, . . .  
be sequences of positive terms. If bo + b 1 + b2 + · · · is determinate and if there is a 
finite k such that a11 _::: bn for n � k, then ao + a 1 + az + · · · is determinate as well. 
(ii) If lcol + lc1 l + lczl + ··· is determinate, then co + c1 + Cz + ··· is determinate as 
well. 

The requirement that once one has added an infinite number of terms, the contribu
tion made by adding still more terms must be infinitesimal bears a striking resemblance 
to the Cauchy condition for convergence of real series, which says that once one has 
added a sufficiently large finite number of terms, the contribution made by adding still 
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more terms must always be less than some previously specified amount. This resem
blance has been discussed by Enestrom [10] and Pringsheim [39] , and more recently 
by Laugwitz [29, 205-208] . Our presentation was inspired by Laugwitz' s  discussion. 
Did Euler anticipate the "Cauchy" criterion for convergence? The answer is far from 
being free of controversy (see McKinzie [35] ) and moreover, even if he did, the dis
covery seems to have made no difference to the historical development of the calculus .  
Enestrom, compiler of  the definitive catalog of  Euler's published works, lamented: 

I have looked in vain for a reference to the Eulerian convergence condition in 
the accessible mathematical writings of the 18th century. The discovery appears 
therefore to remain completely unheeded, and the mathematicians who attack the 
convergence question at the start of the 19th century were surely not influenced 
by Euler. [10] 

That much said, we still have no qualms about using our own definition of determi
nacy, simply and clearly stated in Eulerian language, in our rehabilitation of Euler's 
methods : as we shall see it  is precisely what we need to make Euler's arguments rig
orous .  

The exponential series 

Having outlined an axiomatic system that specifies the properties of infinite and in
finitesimal numbers, and having provided a criterion for the negligibility of infinites
imals in an infinite sum, we are now ready to present our rehabilitation of Euler's 
derivation of the series for the exponential function. 

Exponentiation is defined for 0 and other natural n by 

a0 = 1 

a" = a ·· ·a , � 
n factors 

or more formally using recursion, then extended to positive rational exponents � using 
the root axiom: 

!!! ("C)m a" = ,Ya (a> 0); 

then extended to negative rational numbers by taking reciprocals, 

m m 
a-" = 1fa" (a > 0) . 

From these definitions and the basic field and order axioms for the real numbers , one 
can show that for all positive a greater than 1 and all rational p and q, the following fa
miliar rules hold for rational exponentiation: aP aq = aP+q, (aP )q = aPq, and aP < aq 
if and only if p < q. 

Extending the definition of ax further, from rational to real x ,  and verifying that the 
rules just given also hold for the extension, is more involved. Instead, we assume that 
ax is a real function (defined for all real x) and, using the properties mentioned in the 
previous paragraph as motivation, assume the following axioms for the exponential 
function. 

AXIOMS . For all positive real a greater than 1 and all real x and y, the following 
rules hold : a0 = 1; a-x = 1jax; axay = ax+y; (ax )y = axY; and ax < aY iffx < y.  
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By the Transfer Principle, the axioms stated above hold for hyperreal numbers a s  well . 
In addition to these rules, we also require the following proposition. 

PROPOSITION. Assuming that a is finite and greater than 1, we have the following 
results. If E > 0 and E :::::::: 0 then aE > 1 and aE :::::::: 1. If x and y are finite, then ax :::::::: aY 
iff X:::::::: y . 

Proof We prove this in three steps. (i) Let N be an infinite hypernatural number. 
We want to conclude that a I/ N exceeds 1 by an infinitesimal amount. By the axioms for 
exponentiation, a 11N > a0 = 1, so we may write a 1 1N = 1 + u ,  where u is positive. By 
the Binomial Theorem, a = (a 1 1N )N = (1 + u)N = 1 + Nu + (positive terms), from 
which we conclude that 0 < u < (a - 1)/ N:::::::: 0, and hence a 11N > 1 and a 11N :::::::: 1 .  
(ii) Now let E be positive, and take N = L1 IE J, the greatest hypernatural number less 
than or equal to 1/E, so that 1/ (N + 1) < E ::::: 1/ N. Then by the axioms for expo
nentiation, a 1f<N+I) < aE ::::: a 11N , from which it follows that E:::::::: 0 iff N is infinite 
iff aE :::::::: 1 . Furthermore, a -E, which is 1 j aE, is infinitely close if 1 iff aE is as well . 
(iii) Assuming that both x and y are finite, we conclude that 

ax :::::::: aY iff 
ax 

:::::::: 1 iff ax-y :::::::: 1 iff X - y :::::::: 0 iff X :::::::: y . 
aY 

It is important in the first step that ax and aY are neither infinite nor infinitesimal . • 

Our goal for this section is to show that there is a finite A. such that for all finite x 
and infinite N, 

1 1 1 
ax:::::::: a +  (A.x) + -(A.x)2 + -(A.x)3 + . . .  + - (A.x)N . 

2! 3! N! 

Let x be finite, and for the moment, positive. We choose an infinite hypernatural 
number K ,  which we hold fixed for the rest of this section, and choose a fraction 
J I K that is infinitely close to x. This can be done by taking J = L K x J, so that 
0 < x - J I K < 1 I K ,  and hence that x :::::::: J I K .  

B y  the proposition, we know that ax :::::::: a11K, s o  let u s  now work with a11K. We 
write a11K as (a 1 1K)1, and consider a 11K. By the proposition, a 11K exceeds 1 by an 
infinitesimal amount. We do not know whether that amount is greater or less than 
1/ K, so (following Euler) we introduce a positive scaling factor, A., depending on K: 

1 
aiiK = 1 + A.-. 

K 

It is easy to see that A. must be finite : by the Binomial Theorem, a = (a 11K)K = 
(1 + A./ K)K = 1 + A. + (positive terms) , so that 0 < A. < a . 

We may now expand a11K, written as (1 + A.t )1, as follows: 

ax:::::::: al!K = (alfK)J = ( 1 + A�) J 

( 1 ) jl. ( 1 ) 2 J L ( 1 ) 1 = 1 + J A.- + - A.- + · · · + - A.-
K 2! K J! K 

( J) 1 jl. ( ] ) 2 1 JL ( ] )1 = 1 + A.- + - - A.- + · · · + -- A.-
K 2! 12 K J! 11 K 

1 1 
:::::::: 1 + (A.x) + -(A.x)2 + · · · + -(A.x)1 

2! J! 

(1) 

(2) 
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1 1 
:::::: 1 + (A.x) + -(A.x)2 + · · · + - (A.x)N (3) 

2! N! 

Line (1) follows from the Binomial Theorem, and lines (2) and (3) will be justified by 
the Summation Comparison Theorem once we have shown that the series in question 
are determinate and that their respective terms are infinitely close. 

LEMMA . The series 1 + y + tY2 + tY3 + ··· is determinate for all finite y. 

Proof Fix y > 0 and let no = LY J. Then for n > no, 

y" 
n! 

y"O yn-no < 
y"o (-Y-)n

-
no = bc"-"O, 

no! (no + 1) (no + 2) · · · n - no! no + 1 

where b = y"0 jn0! and c = y j(n0 + 1),  so that lei < 1, c 't 1, and b is finite. As we 
saw earlier, the series 1 + c + c2 + c3 + ···is determinate for 0 < c < 1, so the result 
follows from the Comparison Test for Determinacy. • 

Setting y to A.x in the lemma shows that the series in (2) is determinate, and since 
for positive x, 

-- A.- < - AX k 
1 Jk ( J ) k 1 
k! Jk K - k! 

( ) 
' 

the Comparison Test for Determinacy implies that the series in (3) is determinate. We 
next note that since J is infinite, we have Jkj Jk :::::: 1 and (J j K)k :::::: xk for all finite k, 
and hence 

for all finite k as well . Using the Summation Comparison Theorem, and similar rea
soning for negative exponents ,  we obtain the desired theorem. 

THEOREM . If a is finite and greater than 1, then there is a finite A. such that 

1 1 1 
ax :::::: 1 + (A.x) + - (A.x )2 + - (A.x ) 3 + .. .  + - (A.x)N 

2! 3! N! 

for all finite x and infinite N. 

The natural exponential series 

Suppose one wanted to compute 1 ox using the previous theorem. What value of A. 
would one use? From our original equation, a11K = 1 + A.t , one can deduce that A. =  
K (a 11K - 1) , but this formula is difficult to evaluate, in that it requires the extraction of 
a large-order root of a. Later in this article, we will use a series to compute A., but in the 
mean time one can ask, why not take A. to be some value convenient for computation, 
and use the value of a corresponding to that value of A.? Euler noted that "[s]ince we 
are free to choose the base a . . .  , we now choose a in such a way that A. = 1." [12, 
§§122-123] That is,  we choose a = (1 + 1/ K)K, so that the corresponding series for 
ax is 
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1 2 1 3 1 + x  + -x + -x + · · · . 
2! 3! 

353 

But does this help? Now we need to know this special value of a .  Noting this difficulty, 
Euler wrote, 

[If] we now choose a such that )... = 1 . . .  then the series 

is equal to a. If the terms are represented as decimal fractions and summed, 
we obtain the value for a = 2.71828182845904523536028 . . . .  For the sake of 
brevity, for this number . . .  we will use the symbol e . . . .  [12, § 122] 

The function ex is called the natural exponential function. According to Cajori [3, 
§400] , Euler first used the letter e to represent the natural exponential base in a 
manuscript of 1727 or 1728, published posthumously in 1862. The notation first found 
its way into print in Euler' s  Mechanica sive motus scientia analytice exposita of 1736. 
Its use in such influential works as the Mechanica and the Introductio established the 
notation as standard. See also Coolidge [4] and Maor [34] . 

Let us verify that (1 + 1/ K)K is determinate in the sense that for different infinite 
values of K the corresponding values are all infinitely close. 

PROPOSITION.  For all infinite M, N, and P, 

( 1 )M 1 1 1 ( 1 )N 
1 +- :::::: 1 +- +- + ··· +- :::::: 1 +-

M 1! 2! P! N 

Proof Expanding the binomial power and repeatedly applying the Summation 
Comparison Theorem, we find that for all infinite M and P ,  

( 1 )M ( 1 ) M'I ( 1 ) 2 MM ( 1 )M 
1 + 

M 
= 1 + M 

M 
+ 2! M 

+ . . .  + 
M! M 

M'I 1 MM 1 = 1 + 1 + -- + . . .  + --
M2 2! MM M! 

1 1 1 1 1 1 
:::::: 1 +- +- + ··· +- :::::: 1 +- +- + ··· + -. 

1! 2! M! 1! 2! P! 

Since this computation holds for infinite N as well as M, the result follows .  • 

At this stage one might be tempted to define e to be any one of the values 
(1 + 1/ K)K, for K infinite, and, by now-familiar computations obtain the relation, 

x 1 2 1 3 1 N e :::::: 1 + X + -X +-X + ··· + -X 
2! 3! N! 

(4) 

for all finite x and infinite N. But this does not seem to adequately pin down the 
value of e; one would prefer to have e stand for some specific real number rather than 
having it be an arbitrary choice from an anonymous class of hyperreal numbers, albeit 
all infinitely close. Our remedy is to use the Standard Part Principle, which says that 
every finite hyperreal number has exactly one real number that is infinitely close to it: 
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DEFINITION.  e is the unique real number that is infinitely close to (1 + 1/ K)K, 
where K is infinite. 

Finally, we must verify that this value of e, which actually differs (infinitesimally) 
from (1 + 1 I K)K for each K, still satisfies ( 4 ) . This is a consequence of the following 
proposition, about different exponential functions whose bases are infinitely close. 

PROPOSITION.  If a and b are finite and greater than 1, and a :::::: b, then ax :::::: bx 
for all finite x. 

Proof If a :::::: b and a ,  b > 1, then we may write b = a (l + E) where E :::::: 0. 
Then bx = (a (1 + E)Y = ax (l + E )X. We need only verify that (1 + E )X :::::: 1 .  
Let n = LxJ. Then n ::::: x < n + 1, and by the order axiom for exponentiation, 
(1 + E )n ::::: (1 + E)X < (1 + E )n+I. Since E :::::: 0 and n is finite, by the Binomial Theo
rem we have 1 ::::: (1 + E)n = 1 + E ·(a sum of n finite terms) :::::: 1, and (1 + E)n+l = 
(1 + E)n (l + E) :::::: 1, and hence (1 + E )X :::::: 1, and finally bx ::::::ax . • 

Since e :::::: (1 + 1/ K)K, by the previous proposition we conclude that 

THEOREM. For all finite x and infinite N, 

x 1 2 1 3 1 N e :::::: 1 + X + -X +-X + ··· + -X 
2! 3! N! 

(5) 

By the way, this theorem helps explain the relationship between A and a .  For if A 
happens to satisfy the equation e).. = a ,  then 

1 1 1 
ax = (e}..Y = e}..x:::::: 1 + ('Ax) + - ('Ax)2 + - ('Ax)3 + . . . + - ('Ax)N , 

2! 3! N! 

for all finite x and infinite N.  This shows that the A we chose earlier can be taken to be 
the exponent to which e must be raised in order to yield a: in other words, the natural 
logarithm of a .  We will return to the natural logarithm later in this article. 

The Euler identities and the series for sine and cosine 

Although series for the exponential function, logarithm, and trigonometric functions 
were known to Newton and others prior to 1670 (see [25, p. 436ff ]) ,  Euler's Introductio 
in Analysin Infinitorum of 1748 provided a systematic account of these formulas as 
deduced from basic principles . According to Boyer, 

[The Introductio] contains the earliest algorithmic treatment of logarithms as ex
ponents and of the trigonometric functions as numerical ratios. It was the first 
textbook to list systematically the multiple-angle formulas , calling attention to 
the periodicities of the functions ; and it included the first general analytic treat
ment of these as infinite products, as well as their expansion into infinite series . 
The well-known "Euler identities," relating the trigonometric functions to imag
inary exponentials,  are also found here. [1 ,  pp. 224-225] 

In this section, we will use the multiple-angle formulas to deduce a form of the Euler 
identities, and use these identities to derive the series for sine and cosine. 

The Euler identities are well known to us in the form 
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or equivalently, eix = cosx + i sinx, but to appreciate these formulas one must un
derstand what is meant by eix . This is difficult because the axioms for exponentiation 
discussed so far are silent on the subject of imaginary exponents. It is tempting to take 
our relation ex :::::: (1 + xI N)N for finite x and infinite N, postulate that it holds for 
imaginary exponents as well, 

. lX ( . )N 
e'x:::::: 1 + 

N ' (6) 

and then perform algebraic operations on the right-hand side. We will give a definition 
of eix very close to this one toward the end of the article, but in the mean time we 
avoid the difficulty of having to pin down the meaning of eix by providing a form of 
the Euler identities that does not require the relation in (6),  nor even mention of eix , 
but instead uses algebraic terms of the form (1 + i xI N)N.  We show that for all finite 
x and infinite N, 

cosx"' H (I+ �r + (1 - �n. 
sinx"' ;

i 
[ (1 +  �r- (1 - �n' 

and then use these relations directly. 

(7) 

(8) 

This maneuver frees us from having to define e;X , but what about (1 + ixiN)N? 
We still have to explain how complex numbers fit into the hyperreal framework. In 
elementary courses, the complex numbers are defined by starting with the real num
bers and adjoining a new number i ,  together with the axiom i 2 = -1 and a "transfer 
principle" that says that the usual rules of algebra apply to the extended system of 
complex numbers. This method suits our purposes exactly, except that now we adjoin 
i to the hyperreals rather than the reals, and call the resulting numbers the hypercom
plex numbers . Every hypercomplex number can be written as a + bi where a and b 
are hyperreal . For two hypercomplex numbers c and d,  we write c :::::: d to mean that 
the modulus of their difference is infinitesimal (or equivalently, that their respective 
real and imaginary parts are infinitely close) . We say that a hypercomplex number cis 
infinitesimal if its modulus is infinitesimal,  and finite if its modulus is finite. We note 
that the Binomial Theorem holds for hypercomplex binomials by the Transfer Prin
ciple, and that the Summation Comparison Theorem holds for series of hypercorriplex 
terms by the same argument (given in a later section) as for series of hyperreal terms . 

We begin by proving two standard formulas. 

PROPOSITION . For all real x and natural n, 

1 [( X X )n ( X X ) n ] 
cos x = '2 cos ;; + i sin ;; + cos ;; - i sin ;; , 

1 [( X X )n ( X X ) n ] 
sin x = 

2i 
cos ;; + i sin ;; - cos ;; - i sin ;; . 

(9) 

( 10) 

Proof Using the familiar formulas for the sine and cosine of a sum of angles, one 
can show by induction that for all n and e, cos ne = H (cos e + i sin e) 11 + (cos e -
i sin e)n] and sin ne = M (cos e + i sin e) 11 - (cos e - i sin e)n ] .  Substituting xl n for 
e yields the result. • 

We will obtain (7) and (8) from this proposition using small-angle approximations 
for the sine and cosine. If e is an infinitesimal angle (that is, an angle subtending an 
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1 

e 

Figure 2 0 < s i n e < e < tan e i n  the fi rst quadrant  

infinitesimal arc) then it is obvious from the inequality in FIGURE 2 that sin e ::: e 
and hence that cos e = (1 - sin2 8 ) 112 ::: 1. But the presence of the exponents in (9) 
and (10) prevents us from using these results to take n infinite and substitute 1 for 
cos(x/n) and xjn for sin(x/n) to get (7) and (8) .  For these substitutions to be valid 
we need a sharper result that involves the notion of relative infinitesimal. For E "I= 0, 
we will say that a is infinitesimal with respect to E, and write a ::: 0 (mod E) , to mean 
that a/E ::: 0. Similarly, a ::: b (mod E) means that a - b ::: 0 (mod E) . 

PROPOSITION. If 0 < 8 < 7r /2, then 

1 3 0 e - 2e < sm e < e and 
1 

1 - 2e2 < cos e < 1. 

If e is  a nonzero infinitesimal, then 

sin e ::: e (mod e) and cos e ::: 1 (mod 8 ) .  

Proof Assume that 0 < e < rr /2; the case of negative e will b e  an easy conse
quence. From geometry (see FIGURE 2) we have sin e < e < tan e. From e < tan e 
we deduce e cos e < sin e .  By the double-angle formula, cos e = 1 - 2 sin2 ( � ) ,  
we get 8 ( 1 - 2 sin2 (� ) )  < sin e .  Since sin(� ) < � in this range, we  conclude (re
markably) that e - �e3 = 8 ( 1 - 2( � )2 ) < 8 ( 1 - 2 sin2 (� ) )  < sin e < e ,  which im
plies - �82 < (sin e - 8)/B < 0. Then e ::: 0 implies (sin e - 8)/B ::: 0, and hence 
sin e ::: e (mod B ) .  For the cosine approximation, the formula cos e = 1 - 2 sin\� ) 
implies that 1 - �e2 < 1 - 2 sin2 (� ) = cos e < 1, and thus for e ::: 0, we have 
cos e ::: 1 (mod B ) .  • 

With this proposition we can now prove the theorem. 

THEOREM . For all finite x and infinite N, 

oos x � H(l + �r + (1 - �n . 

sin x � ;
i
[ (l+ �r - ( � - �n 

Proof Let x be finite and N infinite. By the Transfer Principle applied to (9) 
and (10) we get 

1 [ ( X X ) N ( X X ) N] 
cos x = 2, cos 

N 
+ i sin 

N 
+ cos 

N 
- i sin 

N 
, (11) 
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sin x = - cos - + i sin - - cos - - i sin -
1 [ ( X X )N ( X X )N] 

2i N N N N ' 

357 

( 1 2) 

where x I  N ::= 0. Since cos fi ::= 1 (mod fi) and sin fi ::= fi (mod fi ) , we may write 
cos fi = 1 + fiE and sin fi = fi + fi 8 , where E and 8 are infinitesimals depending on 
x and N (take E = (cos fi - 1 )  I fi and 8 = (sin fi - fi) I fi ;  these are infinitesimal by 
the previous proposition) . Then 

x 
± . . x ix  + (E + i 8 )x 

cos 
N 

z sm 
N 

= 1 ± 
N 

. ( 1 3) 

By the Binomial Theorem and the Summation Comparison Theorem, one can eas
ily show that (1 ± cl N)N ::= (1 ± dl N)N whenever c and d are finite, hypercomplex 
numbers that are infinitely close. Thus ( 1 3 )  implies that ( x . . x )N ( ix + (E + i8 )x )N (

l ±
ix )N 

cos - ± z sm - = 1 ± ::= -
N N N N ' 

which by ( I I )  and ( 1 2) yields the result. • 

The familiar series for sine and cosine can now be obtained by applying the Bino
mial Theorem to "multiply out" the Nth powers in (7) and (8) , and then applying the 
Summation Comparison Theorem. This proves the following theorem. 

THEOREM . For all finite x and infinite H, 

x2 x4 x2H 
COS X ::= 1 - - + - - · · · ± --

2 !  4 !  (2H) ! ' 

x3 xs x2H+ I 
sin x ::= x - - + - - · · · ± . 

3 !  5 !  (2H + 1 ) !  

The binomial series 

Many times already we have used the formula, 

m1 ml m!!! 
( 1  + x)m = 1 + mx + -x2 + -x3 + · · · + -xm natural m ,  

2 !  3 !  m !  ' 

a result that was known centuries prior to Euler (though not in this notation) , and 
which can be verified using induction. In 1 665 Newton discovered a generalization of 
the coefficients of the binomial expansion using a complicated interpolation between 
the rows and columns of a tabular form of Pascal ' s triangle, and conjectured that these 
generalized coefficients could be used to obtain a binomial series for negative and frac
tional exponents . Newton tested the conjecture on many examples, including squaring 
the series for ( 1  + x2)112 , 

( I  + x2)1f2 (l + x2)1;2 

to obtain 

= 1 + _ x2 + 2 2 x4 + . . . 1 + _ x2 + 2 2 x4 + . . .  
( I ! ( ! - I ) ) (  I ! ( ! - I ) ) 

2 2 !  2 2 !  
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but he never published a deductive proof of the general formula. (Edwards [9, pp. 178-
1 87] gives a detailed account of the discovery of the Binomial Theorem; see also [25, 
p. 438] . )  Euler states Newton's "universal theorem" [12, §7 1 ] ,  

( Q) m m m m - Il m(m - n) m - 211 2 p + n = P n + _ p -��- Q + p -��- Q 
n n · 2n 

m (m - n ) (m - 2n ) m-3!1 3 + 
n · 2n · 3n 

p " Q + . . .  

but omits the proof "since it can be done so much more easily with the aid of some 
principles of differential calculus" [12, §76] . Surprisingly, we will show that the proof 
of the Binomial Theorem for fractional exponents-which we write as 

m m (m )£x2 (m )lx3 (m )ll.xH 
( 1  + x) n  � 1 + - x  + - - + - - + · · · + - - , 

n n 2 !  n 3 !  n H !  

where H i s  infinite, l x  I < 1 ,  and x 't l-is well within the scope of this article, and 
forms a natural part of our rehabilitation of Euler's methods. The proof uses the Bino
mial Theorem for Factorial Powers, which can be verified by induction. (See [16] for 
other uses of factorial powers . )  

B INOMIAL THEOREM FOR FACTORIAL POWERS . For all real a , b and all natu
ral n, 

B INOMIAL THEOREM (FRACTIONAL EXPONENTS ) .  If l x l < 1, and m and n are 
finite and positive, and H is infinite, then 

m (m )£x2 (m )ll.xH 
( 1  + x)mfn � 1 + -x + - - + . . .  + - - . 

n n 2 !  n H!  

Proof Fix an infinite hypernatural H and a hyperreal x such that l x  I < 1 and x 't 
1 .  We introduce the notation ( 1  + x )0 for the sum, 

2 H r:::l def 2 X H X 
( 1  + x )� = 1 + ax + a-- + ··· + a-- . . 

2 !  H!  

(The dependence on H is not explicit in our notation. )  Generalizing Newton's calcu
lation for ( 1  + x2) 112 , we will show that 

and hence that 

( 1  + x)
l m/n I � ( 1  + x )mfn , 

which is the statement of our theorem in our new notation. 
The key formula in the proof of ( 14) is that for finite positive a and b,  

( 14) 

( 1 5) 
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This i s  easy to see for integral m,  n :  

( 1 + x)l m + n I = ( 1 + x)m+n = ( 1 + x)111 ( 1 + x)" = ( 1 + x)Ei ( l  + x)0. 

For the general case we make use of the Binomial Theorem for Factorial Powers, after 
first multiplying out, gathering like terms, and neglecting the tail . Using the lemma 
(following this theorem), we write 

= 1 + ax + a'l- + · · · + ali.- 1 + bx + b£- + · · · + bH.-
( X2 XH ) ( X2 XH ) 

2 !  H !  2 !  H !  

aL hi
where ck = L -:-;- --:-;- . 

i+j=k l . 1 .  

Observe that for all .finite k, 

i bj k k-j bj 1 k kj 1 L a-
- L a-

- L -
k . . k ck = - - = = - -a� bL = - (a + b)- . . , . , (k " ) 1  . , k '  . , k ' i+j=k l . 1 ·  j=O - 1  · 1 ·  · j=O 1 ·  · 

For the first step in this chain of equalities it is essential that k be finite; the last step 
follows from the Binomial Theorem for Factorial Powers . In the lemma (following) 
we will verify that both L��o ckxk and L�=o (a + b )k. xk I k! are determinate; if for 
the moment we assume this as fact, then by the Summation Comparison Theorem, we 
may conclude that 

which shows (15) . If m and n are finite, then by applying (15) a total of n times, we 
get 

� + . .  · + � I 
( l + x)m = ( 1 + x)Ei = ( 1 + x) n terms c::: (( l + x)l m!n l ) " 

and hence that ( 1 + x)mfn ::::: ( 1 + x)l mjn I, as required. • 

The Binomial Theorem can be extended to negative rational exponents by a similar 
argument, and, by the Sequential Theorem (see the next section) to the case where m 
and n are infinite, so long as mIn is finite. From there it is but a very small step to the 
theorem for real exponents. This is left as an exercise for the reader. 

The previous theorem requires the following lemma. 

LEMMA.  (i) The series 1 + Ia I + la'lx2 12 ! 1 + lalx 3 13 ! 1 + · · · is determinate for 
finite positive a, lx I < 1, x 't 1 . (ii) If ao , a 1 , a2 , . . .  and bo , b 1 , b2 , . . .  are hyperse
quences then for all hypernatural H, 

ck = L a; bj . 
i+j=k 
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Moreover, if l ao / +  /a t ! + Ja2 / + · · · and /ho i + /b t l + / b2 / + · · · are determinate and 
have finite partial sums, then / co l +  J c 1 J + J c2 J + · · · is determinate and has finite par
tial sums. 

Proof (i) We ask the reader to verify that for integral k > a > 0, we have Jak. J < k ! ,  
and hence that J a k.  xk j k ! I .:::: Jxk / .  This shows that for k > a > 0 the absolute values of 
the terms in ( 1  + x)0 are bounded by a determinate geometric series . (ii) Note that 
the product (L�o a; ) <'Lf=o b j )  when multiplied out, is the sum of all terms a; b j for i 
and j between 0 and H .  These terms can be arranged in a table. 

0 1 2 H 

0 aobo aob 1 aob2 aobH 
1 a1 bo a1b1 a1 b2 a 1 bH 
2 a2bo a2b 1 a2b2 a2bH Cz = azbo + a1b1 + aobz 

H aHbo aHbi aHb2 aHbH 

For each k, ck = Li+ j=k a; b j is the sum of all terms on the northeasterly diagonal at k, 
making 'Li�o ck the sum of all of the diagonals, and hence the sum of all terms in the 
table. To see that J c0 /  + J c 1 / + J c2 J + · · · is determinate, observe that for N infinite, 

The second inequality is obtained by noting that if i + j � N, then either i � N /2 
or j � N /2. The final step (:::::: 0) follows because the series are determinate and have 
finite partial sums. • 

Proof of the Summation Comparison Theorem 

In contrast with the other theorems in this article, which concern concrete functions 
and equations, the Summation Comparison Theorem is a result about all functions 
and equations of a general class. It should not be surprising then that the proof is 
more abstract and relies on more basic definitions and principles than the proofs of 
the other theorems . We will show how the Summation Comparison Theorem follows 
from the Least Counterexample Principle, an equivalent of the Hypernatural Induction 
Principle, by way of the Sequential Theorem. The Sequential Theorem is an important 
result due to Robinson [40, Theorem 3 .3 .20] . In a course of study, the proof could be 
delayed. 

LEAST COUNTEREXAMPLE PRINCIPLE . Let </> (n) be an equation or inequality of 
hypersequences; that is, let </> (n) be of the form an = b,, an i= bn, an < bn, or an .:::: b/1 , 
where a and b are hypersequences. Then either </> (n)  holds for all hypernatural n, or 
else there is an m such that </> (m) fails but such that </> (n ) holds for all hypernatural n 
less than m.  
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For example, consider the inequality ¢ (n) given by  ( 1  - n/ H) > 0 ,  for a fixed hy
pernatural H. This inequality is false for n equal to H, but it is true for all n less 
than H. Thus n = H is a least counterexample for ¢ (n) .  On the other hand, the equa
tion all = 0, where an is defined to be 0 for n finite and 1 for n infinite, does not have 
a least counterexample, even though there are counterexamples. It does not however 
disobey the Least Counterexample Principle, because the function a ,  so defined, is not 
a hypersequence (that is, a cannot be obtained by composition of natural extensions of 
real functions with hyperreal parameters) .  

SEQUENTIAL THEOREM.  Let a0 , a1 , a2 , . . .  and b0 , b1 , b2 , . . .  be hypersequences. 
If all � bll for all natural n, then there is an infinite N such that all :::::: bll for all hyper
natural n smaller than N. 

Proof Since the relation an :::::: bll is not an equation or inequality, one cannot apply 
the Least Counterexample Principle directly. Instead, we note that if all � bn for all 
finite n ,  then it is also true that - .!. < an - bn and all - bll < .!. for all finite n > 1 .  By 1l ll 
applying the Least Counterexample Principle to these inequalities , we conclude that 
there is an infinite N such that - .!.  < all - bll and all - bll < .!. for all n between 1 and ll II 
N. By the original assumption that an :::::: b11 for all finite n ,  and using the fact that 1 /n 
i s  infinitesimal for infinite values of  n ,  we conclude that a11 :::::: bll for all n < N. • 

SUMMATION COMPARISON THEOREM. If the series ao + a1 + az + · · · and bo + 
b1 + bz + · · · are determinate, and if for each natural n, a11 � bll , then for all hyper
natural n, ao + a1 + · · · + an :::::: bo + b1 + · · · + bll . 

Proof If a11 :::::: b11 for all finite n then ao + · · · + all � bo + · · · + b11 for all finite n 
as well. By the Sequential Theorem, there is an infinite J such that for all n less than J, 
a0 + · · · + an :::::: b0 + · · · + bn . Let N be greater than J. If the sums are determinate, 
then by definition, a1 + · · · + aN and b1 + · · · + bN are both infinitesimal,  and hence 
for all n ,  ao + · · · + all � bo + · · · + bn . • 

The logarithm and beyond 

Immediately after defining the exponential function ax and discussing the basic rules 
for exponentiation, Euler defined the logarithm for bases a greater than 1 .  

Just as, given a number a ,  for any value of x ,  we can find a value of y [= ax ] ,  so, 
in turn, given a positive value for y, we would like to give a value for x, such that 
ax = y . This value of x, insofar as it is viewed as a function of y , is called the 
logarithm of y . . . .  It is customary to designate the logarithm of y by the symbol, 
log y .  [12, § 102] 

We usually write loga y , making the dependence on the base a explicit in the notation. 
From the definition that for y > 0, loga y is the x such that ax = y , and from the rules 
for exponentials given earlier, the following rules for logarithms (for a > 1 and x, y > 
0) follow immediately: loga 1 = 0, loga x- 1 = - loga x, loga (xy) = loga x + loga y ,  
loga xY  = y loga x, and loga x < loga y iff X < y .  

Early in  the Introductio, Euler explained how these properties of  the logarithm, 
insofar as they reduce exponentiation to multiplication and multiplication to addition, 
make compiled tables of logarithms extremely useful for performing computations. 
One of his examples, employing a table of logarithms to the base 10, is as follows. 

If the population in a certain region increases annually by one-thirtieth and at 
one time there were 100,000 inhabitants, we would like to know the population 
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after 100 years . For the sake of brevity, we let the initial population be n ,  s o  that 
n = 100, 000. After one year the new population will be ( 1  + fa )n = �n .  Af
ter two years it will equal (� ) 2n .  After three years it will equal (� ) 3n .  Finally 
after one-hundred years the population will be (� ) 100n = (� ) 100 100 ,000. The 
logarithm of this population is 100 log � + log 100 ,000. But log � = log 3 1 -
log 30 = 0 .014240439, so that 100 log � = 1 .4240439, which, when increased 
by log 100 , 000 = 5, gives 6.424039,  the logarithm of the desired population. 
The corresponding population is 2,654,874. So after one-hundred years the pop
ulation will be more than twenty-six-and-a-half times as large. [12, § 1 10] 

The question remains : how might one compile such tables of logarithms? Euler gave 
an example to show how Briggs computed logarithms for his famous Arithmetica Log
arithmica of 1624 using a calculation-intensive algorithm that required the manual 
extraction of many successive square roots, but noted that, "In the mean time, much 
shorter methods have been found by means of which logarithms can be computed 
more quickly." [12, § 106] In the succeeding chapter, Euler explained how to calculate 
logarithms using series .  

Let us find a series for the logarithm with base e .  This logarithm can be written loge 
but is more often written ln. To get started, we relax the requirement that for a given y 
we must find the x such that ex is exactly equal to y , and instead try to find, for a given 
finite y > 0, 

an x such that ex � y .  ( 1 6) 

Earlier we found that for finite x and infinite N, ex � ( 1  + xj  N)N, so let us solve 
the equation y = ( 1  + x j N)N and see whether that solution is of any use. A solution 
(taking the principal Nth root of y) is given by 

X =  N(y lfN - 1 ) .  

Observe that this does satisfy ( 1 6) ,  

( N(  lfN 1 ) )N 
ex = eN(y 1fN - 1) � 1 + Y 

N
-

= ( 1  + y lfN _ 1 )N = (y lfN)N = y ,  

so that indeed, ex � y .  In our discussion of the logarithm, we also need to know that 
N (y 11N - 1 )  � ln y . 

THEOREM . lfy is .finite and positive, then ln y � N(y 11N - l )for all infinite N. 

Proof Let y be finite and positive. By the preceding computation, eN<y ' fN - l) � y = 
e1n Y .  Then N(y 11N - 1 )  � ln y follows from the proposition saying that x � y if and 
only if ex � eY for finite x and y .  • 

In [12, § 1 19] ,  Euler used the formula ln y = N(y 11N - 1 ) ,  for N infinite, to derive 
the series for the natural logarithm. He expanded the function log ( l  + y)  using the 
Binomial Theorem for fractional exponents to get 

log ( l  + y) 

= N [ ( 1  + y) l/N - 1 ) 
= N [ [ 1 + _!_y + _!_ (_!_ - 1) .!_i + _!_ (_!_ - 1) (_!_ -2) .!_l + · · ·] - 1] y 

N N N 2! N N N 3 !  



VOL.  74, NO. 5 ,  DECEM B E R  2001  3 63 

Then, using the fact that N is infinite, Euler substituted 0 everywhere for 1 IN, and 
obtained the equation, 

Such substitutions are somewhat more difficult to justify for this series than for our 
earlier examples, but it is nonetheless within reach of the methods we have discussed 
thus far. 

THEOREM. For all y with I Y I  < 1 but I Y I  't - 1, and all infinite H, 

1 2 1 3 H+1 1 H log ( l  + y) � y - -y + -y - · · · + ( - 1 ) - y . 2 3 H 
Proof Assume that I y I < 1 ,  I y I 't - 1 ,  and let H be infinite . By the Binomial The

orem for fractional exponents, we conclude that for all .finite n ,  ( )2 ( ) H 
1 n 1 1 - 1  2 1 - 1  H ( 1  + y)  I � 1 + -y + - -y + · · · + - -y . 

n n 2 !  n H!  ( 1 7) 

For n infinite, both sides are infinitely close to 1 ,  so ( 17) is actually true for all hy
pematural n, infinite as well as finite. Thus it is tempting to follow Euler's lead and 
substitute an infinite N for n in ( 17), subtract 1 from both sides, then multiply by N.  
We cannot quite do  this , because ( 17) has "�" rather than "=" ,  and because for N in
finite it does not follow from a �  b that Na � Nb (for a counterexample take a =  0, 
b = 1 / N). Instead we can do this :  ( 1 7) implies that for all .finite n ,  

n [0 + y) 1 fn - 1 ]  

where the alternation in  signs follows from the fact that for k > 0 and n > 1 we have 
( 1 /ni'- = (- l )k- 1 • .! ( 1 - .! ) (2 - .! ) · · · ( (k - 1 ) - .! ) . Hence by the Sequential The-n n n n 
orem we conclude-not for all-but that for all sufficiently small infinite N, 

N [ ( 1  + y) 1fN - 1] 
( 1 - �) y2 ( 1 - �) (2 - �) y3 

� y - 1 · 2 + 1 . 2 " 3  
H- 1 ( 1 - M  (2 - �) (H - 1 - �)) YH 

- · · · + (- 1 ) 1 . 2 . . .  H - 1  " [j · 
When this last sum is compared with the sum 



3 64 MATHEMATI CS MAGAZI N E  

it i s  clear that term by term the sums are infinitely close, s o  we need only verify that 
both sums are determinate. For I y I < 1 ,  I y I 'j:. - 1 ,  determinacy follows from the Com
parison Test for Determinacy by comparison with a determinate geometric sum. By the 
Summation Comparison Theorem we finally conclude that 

[ 1/H J 
1 2 1 3 H+1 1 H H ( 1 + y ) - 1  :::: y - - y + - y - · · · + (- 1 ) - y 
2 3 H 

for all infinite H.  The result now follows from the previous theorem. • 

Finally, Euler observed that though the series for the logarithm just given does not 
converge rapidly, and hence is not itself so effective for computing logarithms, it leads 
to other series that are quite effective. For example, 

log -- = log( l + x) - log( l - x) = 2x + -x3 + -x5 + · . . . 

( 1 + x ) 2 2 1 - X 3 5 

Euler remarked, 

This last series is strongly convergent if we substitute an extremely small frac-
. c F · · f 1 h l 6 l 

3 2 2 2 uon 10r x . or mstance, 1 x = 5 ,  t en og 4 = og 2 = 1-5 + 3.52 + 5 . 5 5  + 2 If 1 th l 4 2 2 2 2 d ·f  1 7·57 + . . . . x = 7 •  en og 3 = 1.7 + 3·72 + 5·75  + n7 + . . .  ' an 1 x = 9 •  
then log � = /9 + 3 _;2 + 5 _;5 + 7 _;7 + · · · . From the logarithms of these frac
tions, we can find the logarithms of integers . From the nature of logarithms we 
have log � + log 1 = log 2, and log � + log 2 = log 3, and 2 log 2 = log 4. Fur

thermore we have log � + log 4 = log 5, log 2 + log 3 = log 6, 3 log 2 = log 8, 
2 log 3 = log 9,  log 2 + log 5 = log 10 . [12, § 1 23]  

Using these series and relationships, Euler was able to show how to begin constructing 
a table of logarithms .  

In  the Introductio, Euler also exhibited series for other transcendental functions, 
including the tangent, cotangent, and arctangent, and went on to show how to use 
infinite products to compute the values of infinite sums . Using infinitesimal methods 
similar to those described here, Euler factored the sine function into an infinite product 
and used that factorization to deduce the celebrated formula 1 + � + � + ff; + -is + 

· · · = :n:62 • Both of these theorems can be rehabilitated, but the algebra turns out to be 
more taxing. 

THEOREM.  For all finite x and infinite H, 

H ( x2 ) 
sin x :::: x fl 1 - --2 . 

k=l (krr )  

THEOREM. For all infinite H, 

A careful analysis of Euler' s  arguments for these two results is given in [37] . 
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The connection between standard and nonstandard notions 

Our theorem saying that ex :::::: 'L�=o �;; , for all finite x and infinite N, is conceptually 
similar to the standard theorem that says 

oo n 
ex = "" � 

� I ' 
n=O n .  

for all real x ,  but these theorems are not the same. The former refers to a hypernatur
al summation within a proper extension of the real numbers while the latter refers to 
something we have not yet discussed: the limit of a real sequence of partial sums. The 
notion of limit is usually taken to be the dividing line between algebra and analysis. 
In this section we give a brief sketch of how to cross that line. Let us first recall the 
standard definition of convergence for infinite series .  

STANDARD DEFINITION OF CONVERGENCE OF SERIES . Let s be a real sequence 
and let r be real . We say that s converges to r if and only if for each positive real E 
there is a natural n such that for all natural m greater than n ,  I sm - r I < E .  We write 

"L:o a" = r to mean that a is a real sequence such that its sequence of partial sums 
a0 , a0 + a1 , a0 + a 1 + a2 , . • .  converges to the real number r .  

Except for our definition of the real number e given above, thus far w e  have not had 
to distinguish between the closely related notions of real number and .finite hyperreal 
number. But we need this distinction if we are to convert our results about hyperreal 
numbers to results solely about real numbers. The real numbers are distinguished from 
other ordered fields by the Completeness Axiom. We will not prove this here but the 
Standard Part Principle is actually a consequence of the Completeness Axiom for the 
real numbers . (See Keisler [23, pp. 36--40, 908-909] . )  

STANDARD PART PRINCIPLE . For every finite hyperreal b there is a unique real r 
such that r :::::: b. This real r is called the standard part of b, denoted 0b. 

Earlier we used the Standard Part Principle to define the real number e to be 
0 (1 + 1/ N)N, where N is infinite . This definition and (5) together with the assumption 
that ex is a real function, imply that 

(18) 

for infinite N.  Rather than assuming ex to be defined for all real numbers (as we did 
above) one could instead take (18) to be the definition of the function ex and derive 
the usual prope1ties of exponentiation from this definition. We chose not to do that, 
but it is a reasonable alternative. However, for complex exponentiation the synthetic 
approach is all we have at our disposal, so we simply define eix by the identity 

. l X 
( . )N 

e•x = o 1 + 
N ' 

for real (and hyperreal) x ,  where 0 (a + bi )  = (0a) + (0b) i .  From this definition one 
can deduce the Euler identities in their familiar form. 

COROLLARY. For all real x, 

cos x = 
2 

and 
eix _ e-ix 

sin x = ----
2i 
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The connection between the infinite sum of a determinate hypersequence and the 
convergence of a real sequence of partial sums is given by the following theorem, 
which is a consequence of the Transfer Principle and the Least Counterexample Prin
ciple. The proof, although somewhat technical, is within the scope of Keisler's calculus 
book. 

THEOREM . Let f3 be a hypersequence such that {30 + {31 + {32 + · · · is determinate, 
let b be a real sequence, and suppose that bn ::::::: f3n for all natural n. Then the real 
sequence of partial sums of b is convergent in the standard sense, and for all infinite 
hypernatural N, I::o bn = 0 L:=o f3n · 
(Note that the convergence of b is a consequence, not a hypothesis .)  This theorem 
implies standard analogs of all the summations in this article. 

COROLLARIES . For all real x, 

oo x2k+ I 
sin x = 8<- l)k 

(2k + 1 ) ! '  
00 (m ) k xk ( 1  + X  )min = L 

- -I for lx I < 1 . k=D n k . 

oo xk 
log ( l  + x ) = L(- l )k+ I _ for l x l < 1 ,  

k=l k 

Proof For the first equation, let N be infinite. Then ex = 0 "L:=o �;; = "L:o � .  
The others are similar. • 

Lessons from Euler 

The Introductio was expressly intended as a precalculus textbook, that is ,  a book for 
a course of study prior to differential and integral calculus .  The point was not to give 
short and slick derivations from an extensive body of knowledge, but rather to educate 
beginners . Euler said, 

Although all of these nowadays are accomplished by means of differential cal
culus, nevertheless ,  I have here presented them using only ordinary algebra, in 
order that the transition from finite analysis to analysis of the infinite might be 
rendered easier . . . .  At the same time I readily admit that these matters can be 
much more easily worked out by differential calculus .  [12, pp. ix-x] 

We might take a lesson from Euler's great textbook for our own courses. In the stan
dard treatments, discrete mathematics is held disjoint from the calculus ,  and interesting 
and useful series are studied only after Taylor's Theorem is proved-usually at the end 
of the lectures on convergence of sequences and series, well after the derivative is thor
oughly studied. In Euler' s  treatment, beginners get their hands on concrete examples 
of sequences and series even before the derivative is defined. As rehabilitated here, this 
approach might also give our own students practice with important topics from discrete 
mathematics-induction, recursion, finite summations, and axiomatics-in the course 
of proving elementary analogs of theorems of real analysis. But whether or not our 
rehabilitation of Euler's methods finds its way into the educational main stream, we 
hope that by focusing our attention on the intellectual beauty of the underlying math
ematics, we have convinced the reader that Euler' s  insights and arguments, far from 
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being reckless or  nonsensical, are directly relevant to the understanding, appreciation, 
and application of elementary mathematics even in our day. 

Acknowledgment. An outline of this article was presented to the Col6quio Internacional de Matematica Niio
Standard (Aveiro, Portugal, 1 994) ; see [36] . The authors thank Richard Askey, Michael Benedikt, Michael 
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Letter to the Ed i tor  

Dear Editor: 
In my paper, "Avoiding your spouse at a bridge pruty," appearing in the Februru-y 

200 1 issue of this MAGAZINE, I calculated certain probabilities , associated with couples 
playing bridge, b11 , using the inclusion-exclusion principle. In an aside, I commented 
that the fact that the probabilities could be expressed as a sum with decreasing terms 
"is a consequence of our having formulated the expression for the b, using the inclusion
exclusion principle." Professor Lajos Takacs pointed out to me in a letter that this claim is 
false. It is true that the terms in the sum are decreasing, but this fact is not a consequence 
of the inclusion-exclusion principle. 

Recall the inclusion-exclusion principle, which can be proved by doing the following 
exercise from Probability Theory and Examples, 2nd Ed. , by Richard Durrett (p. 22, 
ex. 3 . 1 1 ) : 

Let A t ,  A z ,  . . .  , An be events and A =  U:'= t A; . Prove that 1 A  = 1 - f17= t  ( 1 - 1A) · 
Expand out the right hand side, then take expected value to conclude 

P (� A) = t P (A ; ) - t; p (A; n Aj ) 

+ i�k p (A; n Aj n Ak) - . . .  + (- 1 ) "-
t
p (O A;) . 

In the preceding, 1A  is the indicator function equal to 1 if x E A, and 0 otherwise. 
A trivial example of a case for which my statement is false is where we have n events 

A t  . . . .  , An such that A t = Az = · · · = A11 , and P (A; ) = a ; then 

In this case, then, the terms are just a times the binomial numbers n ,  G),  . . .  , G) . . . . , 
n ,  1 and this sequence is not decreasing. When n = 3 ,  for example, the sequence is 3 ,  3 ,  1 .  

I regret the error. 

Barbara H. Margolius 
Cleveland State University 
Cleveland, Ohio 441 1 5  
b.mru·golius @ csuohio .edu 
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Smullyan's Vizier Problem 

M I C H A E L K H 0 U R Y, J R .  
Den i son U n iversity 

Granville, OH 43023 

In his book Satan, Cantor, and Infinity, renowned logician and puzzler Raymond 
Smullyan poses a problem in the familiar genre of knights (who always tell the truth) 
and knaves (who never tell the truth) . Although a solution of sorts is presented, evading 
the difficulty without confronting it, the central difficulty is by no means resolved. In 
this paper, I will analyze the problem and present two solutions, one of which I prove 
to be the most efficient algorithm to solve Smullyan' s  problem. 

Though it will later be necessary to alter the problem, for the moment let me present 
it exactly as Smullyan originally gave it with the following excerpt from Satan, Cantor, 
and Infinity, in which the character Alexander meets with King Zorn after deducing 
the location of his kidnapped love, the princess Annabelle. 

"Ah! " said the King, "your next task is to find out whether my Grand Vizier 
is a knight or a knave. If you succeed, I will have Annabelle released. You may 
ask the Vizier as many questions as you like, but they must all be answerable by 
yes or no. " 

"But that 's ridiculously easy! " cried Alexander. "I have merely to ask one 
question-one question whose answer I already know, such as whether two plus 
two equals four. From his answer, I will of course know whether he is a knight or 
a knave. " 

"You shouldn 't have interrupted! " said the King. "Of course you can find out 
by asking just one question whose answer you already know. But I was about 
to say that you are not allowed to ask any question whose answer you already 
know. " 

The suitor stood lost in thought. 
"Let me be more explicit, " said the King. "You don 't have to plan the sequence 

of questions in advance; at any stage, the questions you decide to ask may depend 
on the answer already given, but at no stage are you allowed to ask a question 
whose truthful answer could be known to you. " 

The analysis of this simply-stated problem gives rise to a host of logical issues . 

Alexander's instructive blunder and Smullyan's trick 

Alexander offers what he believes to be a solution, though Smullyan' s  King Zorn de
bunks it handily. Still, it will be to our benefit to examine this pseudosolution. 

Alexander' s solution begins by asking if the Vizier is an unmarried knight. This 
question is deceptively shrewd. Notice that unmarried knights, being knights who must 
needs be truthful, would respond in the affirmative. Any knave, who must always lie, 
would falsely claim to be a unmarried knight, so all knaves would say "yes ." This 
question has the remarkable property that it will be answered "no" if and only if the 
Vizier is a married knight. We can say that this question singles out married knights. 
In particular, if the Vizier happens to be a married knight, this question will reveal that 
fact. Also, the correct answer is not known to Alexander in advance. Hence Alexander 
might pass the test with this one question. 
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To this point Alexander' s  analysis i s  entirely correct. However, in what follows he 
makes a critical mistake. He reasons that, married knights being singled out, it is only 
necessary to single out unmarried knights . Mter both questions, he would have singled 
out all knights, so the Vizier 's  knighthood or knavery would be evident. It can be 
checked that "Are you a married knight?" singles out unmarried knights, and that this 
question individually is legal. The flaw in Alexander' s  reasoning is that, although the 
questions do together settle the problem of identifying the Vizier, and although each 
question alone would be legal, each question precludes Alexander 's asking the other. 
Mter the first question, Alexander knows whether the Vizier is a married knight-but 
this is precisely the answer to the next question he wants to ask. Similarly, it would 
be illegal to ask the questions in the opposite order. Thus Alexander' s  two-question 
solution is in fact incorrect. 

Smullyan's trick Smullyan presents a solution to the problem in his book, but as I 
mentioned, this solution only evades the difficulty. The solution that Alexander uses 
is to draw a card from a deck, show it to the Vizier without looking at it, and ask him 
"Is this card red?" Since he has not seen the card, he does not know the answer to the 
question in advance. Having heard the response, the interrogator can simply look at 
the card and know immediately whether the Vizier was telling the truth. Voila. Case 
settled . . .  sort of . . . .  

Although King Zorn admits that this solution meets his stipulations, Smullyan' s  
King Zorn states that "it seems like cheating." Personally, this solution leaves an un
satisfactory taste in my mouth. Read on . . . .  

Evading the issue, which is what, exactly? To avoid semantic difficulty, we must 
define the concept of answer and response. In this paper, answer shall always refer to 
the truthful, correct answer to a question, while response shall always refer to what 
the Vizier actually claims. For example, if a knave is asked "Does a triangle have 
three sides?" the answer will be "yes" while the response will be "no." (It should not 
be supposed that the answer is independent of the identity of the Vizier and that the 
response is not; indeed, for questions like "Are you a knight?" the situation is exactly 
the reverse . )  Note that there is an interesting mutual dependency of the answer to a 
question Q, the response to Q, and the knighthood/knavery of the Vizier. Any two 
determine the third (the reader should verify this).  

This interdependency is the basis of diagnosing knights and knaves. The usual 
method of identifying knights and knaves is asking them questions whose answers 
are already known, like "Is two prime?" and comparing the response to the answer. By 
the interdependency principle, this method will always work. An interesting question, 
clearly the question Smullyan' s  King Zorn (and of course Smullyan) intended to ad
dress, is whether knights and knaves can be distinguished without directly using this 
dependency. 

We can now say exactly why Smullyan's  solution is unsatisfying. The downfall 
of Smullyan' s  solution is that it does not address the fundamental question behind 
the Vizier problem. The identification is still done by comparing the answer and the 
response to a given question. The only difference is that of which is learned first, a 
detail which had never been of importance. Therefore, Smullyan' s  solution to his own 
problem does not settle the question of whether a knight can be distinguished from a 
knave without using the combined knowledge of a response and an answer to the same 
question. 
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A suitable restatement 

We can now infer with confidence that King Zorn' s  challenge was motivated by the 
question of whether a knight can be distinguished from a knave without comparing a 
response to an answer. Restating the problem in such a way as to ensure that a solution 
must address this fundamental issue turns out to be tricky, even though we have now 
made precise what the fundamental question is .  

Since the intent of the problem is to prevent Alexander from comparing an answer 
to a response, a natural restriction could be that Alexander may not know or be able 
to learn the answer to any of his questions, either at the time they are asked or at 
any later time. This would certainly rule out Smullyan's  solution. Unfortunately, this 
restriction is far too much for King Zorn to demand; no solution would exist. Suppose 
that Alexander could determine the identity of the Vizier under these rules. Then, by 
comparing the Vizier' s  nature to all of his responses, Alexander could learn the true 
answers to all the questions, rendering his procedure illegal. 

To address the issue, we must make a weaker restriction. A key to Alexander' s  
success is his ability to make an observation of  the card during the interrogation. To 
prevent this,  King Zorn can require that Alexander ask his questions from an isolation 
chamber, a selective sensory deprivation chamber such that the only information he 
can obtain from the outside world is the response by the Vizier. 

As it stands,  this "isolation chamber" admits a subtle modification of Smullyan's  
scheme. Smullyan' s  scheme is based on the principle of  asking a question whose an
swer becomes known after the question is asked. In that spirit, Alexander could ask 
"Will you respond to this question in one minute or less?" Once again, the question 
is legal (since the answer is not determined in advance) and effective (since the an
swer will be evident as soon as the response is given) . In some ways this method is 
an improvement over the "Is it red?" strategy, since it dispenses with the external phe
nomenon of the card. To escape this, we will assume that the isolation chamber masks 
all ancillary information about the response as well, including the Vizier' s  response 
time, tone of voice, facial expression, etc . The selective sensory deprivation permits 
Alexander to perceive only whether the Vizier responds "yes" or "no." The practical 
details of how this masking of information would be carried out is irrelevant to our 
discussion. 

Though this restriction has made impossible both Smullyan' s  evasion and the above 
evasion, it is not entirely satisfactory, since Alexander can ask a question like "Is the 
hundred thousands digit of the result of multiplying 4305836 by 23894 odd?" Alexan
der can easily delay his own computation of the answer until after he has heard the 
Vizier' s  response. Although the isolation of Alexander is important, we are still miss
ing one crucial restriction on the question-the answer may not be determined by the 
information available to Alexander when he asks it. This is harsher than merely pro
hibiting questions whose answer is known. In particular, it closes the loophole of the 
multiplication problem. 

It seems that this reformulation of the problem would express  King Zorn's  true 
wishes. It has neither a trivial solution (like the original statement) nor a trivial proof 
of impossibility (like the restatement given in the second paragraph of this section) . 
Also, any solution of this problem would necessarily avoid comparing an answer to a 
response. 

Therefore, for the purposes of the remainder of this paper, the restrictions on 
Alexander' s  actions are understood to be as follows :  

• Alexander receives no information from the external world other than the Vizier 's  
responses. 
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• Alexander may ask no question whose answer can be determined from the informa
tion that Alexander has at the time he asks it. 

• Alexander may ask only questions that the Vizier can answer by "yes" or "no." 

The last of these items is not affected by the analysis of this section and is left as 
Smullyan gave it. 

Eliminating the bounded 

Some of the material in this section is based on a putative proof Alexander offers to 
show that the King' s  task is impossible. While Alexander' s  proof is not correct, as 
Smullyan' s  Professor Bacterius explains ,  parts of it can be modified and repaired to 
prove that certain types of solutions to the problem are impossible. 

It is straightforward to dismiss the possibility of a single question that would solve 
the problem. To see this,  suppose that there existed such a question Q. Since Q solves 
the problem, either of the two possible responses tells the interrogator the nature of the 
Vizier. Since the nature of the Vizier is unknown prior to the question, both outcomes 
are possible. That is, there are two possible outcomes, each of which implies one of two 
possible natures of the Vizier. Since knighthood and knavery must each be represented, 
one of the following two cases holds regarding Q: 
1 .  either the response "yes" is given and the Vizier is a knight or the response "no" i s  

given and the Vizier is a knave, or 

2. either the response "no" is given and the Vizier is a knight or the response "yes" is 
given and the Vizier is a knave, 

where the interrogator is aware whether 1 or 2 is in effect. However, in case 1 ,  
whichever response i s  given, the answer i s  "yes," so the answer i s  predetermined. 
Similarly, in case 2, the answer is predetermined to be "no." Thus such a question Q 
would not be admissible, and a one-question solution is impossible. 

A simple extension of this argument is possible to show that no algorithm can guar
antee success when a bound on the number of questions known in advance. That is ,  
the interrogator cannot know before beginning the interrogation that he will succeed 
in 10 questions, or 200, or 3000, or any other specified number. Again the proof is by 
contradiction. Suppose a solution exists in which the interrogator knows in advance 
some bound on the number of questions .  Let n be the smallest such bound known in 
advance by the interrogator. Since he does not know n - 1 to be a bound, his method 
must anticipate some case in which the Vizier 's  identity is still unknown after n - 1 
questions. Since he knows his method will succeed in n questions, he knows the n1h 
question will be decisive in this case. The analysis of the preceding paragraph applies 
here and shows that no such n1h question would be admissible. Thus ,  no solution is 
possible when a bound on the number of questions is known in advance. 

It is ,  however, possible to construct a solution that will succeed with an unspecified 
number of questions. I have in fact two methods. 

First solution 

Let us revisit an idea presented by Smullyan and detailed previously, that of asking, 
"Are you an unmarried knight?" Recall that only a married knight could respond "no" 
to this question, so this question singles out married knights . A "no" response, there
fore, would settle the matter, while a "yes" response would not distinguish between un-
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married knights and knaves of any marital status. While one would now like to single 
out unmarried knights so that all types of knights will be accounted for, leaving only 
knaves and hence identifying the Vizier, this is prohibited because the required ques
tion, ''Are you a married knight?" is illegal since the result of the first question gives 
precisely this information. Thus the answer would be known in advance, as Smullyan 
points out. This should not surprise us now, however, since the algorithm, if successful, 
would require at most 2 questions,  and hence would be a successful algorithm with a 
bound on the number of questions known in advance; we have already shown this to 
be impossible. 

An alternate approach would be to single out married knaves,  so the Vizier would 
certainly be identified if he is married. The question to do this is "Are you an un
married knave?" A "yes" response will be forthcoming if and only if the Vizier is a 
married knave, as the reader can verify. If this question identifies the Vizier, then we 
have succeeded. Otherwise, we seem to be in a bit of trouble. Singling out unmarried 
knaves is just as impossible as identifying unmarried knights, for precisely the same 
reason. While this approach offers no guarantee, it will succeed if the Vizier is married, 
regardless of his nature. The crucial point is that these two questions have a positive 
probability of success . 

Note the following general result, which we can apply later. We can single out 
knights with a certain characteristic X by asking, "Are you a knight without char
acteristic X?" and listening for a "no." Similarly, we can single out knaves with a 
characteristic X by asking, "Are you a knave without characteristic X?" and listening 
for a "yes ." (The reader should verify this observation and compare with the questions 
already used, in which "being married" is X. )  

I now present the first method of  diagnosing the Vizier. First, the two questions 
about marriage are asked, settling the issue if the Vizier happens to be married. Next, 
if that fails to determine his nature (which will be the case if and only if he is unmar
ried), the corresponding questions are asked to test for knights and knaves with some 
unrelated characteristic, taking X to be, perhaps "liking iced tea." These two questions 
will distinguish the Vizier if he likes iced tea. Furthermore, they will be legal, since 
the prior questions about marriage will give no information about iced tea preferences. 
Repeat this with a different characteristic, then another, and so on until you happen 
to choose a characteristic that the Vizier actually possesses . Once you choose a char
acteristic that the Vizier has, one of the two questions will force him to give himself 
away. A typical beginning to the interrogation could be as follows :  

X = being married 

X = liking iced tea 

X = owning a pet cat 

and so on. 

"Are you an unmarried knight?" 
"Are you an unmarried knave?" 

"Yes." 
"No." 

"Are you a knight who does not like iced tea?' ' "Yes." 
"Are you a knave who does not like iced tea?" "No." 

"Are you a knight who doesn't own a pet cat?" "Yes." 
"Are you a knave who doesn't own a pet cat?" "No." 

The Vizier' s  responses in the above represent a sort of worst-case scenario. If the 
Vizier gives the opposite response from the one given here to any particular question, 
the interrogation will be complete and the Vizier identified. Provided that the X' s  cho
sen are independent, it is easy to see that all the questions are legal. Also, provided 
that the X's  chosen have probability bounded away from zero of belonging to the 
Vizier, the probability that the Vizier will lack the first n chosen approaches zero as n 
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becomes large. In other words, the probability i s  zero that the Vizier will lack every 
characteristic you will think of and thereby escape classification. Also equivalently, 
this strategy will succeed with probability 1 .  Therefore, this method could be consid
ered a solution. It should be pointed out immediately that an event with probability 1 
is not necessarily certain to occur, despite the common term "probabilistic certainty." 
For example, if two people independently select positive integers, they will choose 
different integers with probability 1 .  Yet they might, say, both choose 1 3 .  As a further 
defect, this method relies on the interrogator' s  having to invent an unbounded number 
of independent characteristics .  It is not entirely obvious that an unbounded number of 
independent questions can be generated; if not, this solution would not be a complete 
algorithm. 

Instead, the spirit of the approach can be retained and the procedure made complete 
by having the Vizier flip a coin before each pair of questions and taking the character
istic X always to be "having just flipped a head." This is certainly legal by the above 
line of reasoning, since the individual coin flips are independent (of course Alexander 
does not see the coin flip, because he is in the sensory deprivation chamber) . Since the 
Vizier will be identified within two questions after the first head is flipped, the method 
could fail only if the coin came up tails forever, an event with probability zero. The 
probability of success, then, is 1 .  This algorithm does give a probabilistic certainty of 
identifying the Vizier without use of a response-answer combination. 

However, the expected number of questions required to diagnose the Vizier is .finite. 
Since the expected number of coin flips required to get a head is well known to be 2, 
the expected number of question pairs here is also 2 .  

Second solution 

A different solution relies on a single characteristic with a countably infinite number 
of possibilities ; compare this to the preceding solution, which relied on a countably 
infinite number of characteristics, each with two possibilities .  Before the algorithm is 
started, the Vizier should be made to choose an element of a countable set;  for conve
nience, we will have the Vizier choose a natural number. We can now single out, using 
our established technique, a knight with number 1 , then a knave with number 1 . Next, 
we single out a knight with number 2, then a knave with number 2. This continues 
until the Vizier 's  chosen number is reached, at which point one of the two questions 
will determine the Vizier' s  nature. 

More specifically, for any integer n, let A11 be the question "Are you a knight whose 
number is not n ?" and let B11 be the question "Are you a knave whose number is not 
n?" The response to A11 is "no" if and only if the Vizier is a knight who chose n ,  and 
the response to B11 is yes if and only if the Vizier is a knave who chose n. It is clear, 
then, that if the Vizier is a knight (respectively a knave) and he chose n ,  he will be 
identified by question A, (respectively B, ) .  Also notice that if a question does not 
identify the Vizier, it will not distinguish between any of the other possible cases ; thus 
these questions are legal in any order, provided that the Vizier has not been identified. 
Therefore, a legal and successful series of questions is A 1 , B1 , A2 , B2 , A3 , B3 , • • • .  

It should be noted that extreme care should be taken in the selection of the Vizier' s  
number. I f  Alexander can know any bounds on  the number at all, even ridiculously 
high bounds, the method will not work. The number should be chosen randomly, not 
based on some fixed characteristic of the Vizier. Even a seemingly innocent way of 
choosing the number can lead to a bound. The number of children the Vizier has, for 
example, is bounded above by even the wildest overestimate for the population of the 
Earth. In fact, the Vizier must think of his number only and not write it down, since 
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the resulting upper bound on the amount of time it takes to write his number would 
imply an upper bound on the number. Although this is nit picking by any standard, it 
is essential . If there is any bound placed on the Vizier 's  number, his number of choices 
will be finite (though gargantuan) and therefore the interrogation will need only a 
bounded number of questions . We have already proven, however, that an interrogation 
with a known bound on the number of questions is doomed to failure. 

To deal with these problems, we must postulate that it is possible for the Vizier 
to choose a number in such a way that his choices are unbounded. No procedure for 
doing so can be given explicitly, nor can a probability distribution be specified. In fact, 
a mathematical justification of such a process is impossible, though it is intuitively 
very reasonable. Any reader who is unwilling to humor this postulate is free to accept 
only the first solution as legitimate. 

Note the contrast to the other solution. Where the success of the other was a mere 
probabilistic certainty, this is an absolute certainty. Though the number of questions 
is unbounded, it is finite for each possible outcome of the interrogation. That is, if 
the Vizier knew the algorithm the interrogator was using, the Vizier himself would 
be able to specify the finite number of steps it will take (at most twice the number 
he chose) . Observe that this is not true of the first solution. Clearly this cannot be 
improved upon, since solutions with bounds known by the interrogator himself have 
already been proven impossible. Still, there are many possible meanings for improve
ment. The second strategy is superior in the sense that it is guaranteed to terminate, but 
it relies on an intuitive assumption. The first strategy is superior in the sense that it has 
a finite expected number of questions, but it will succeed only almost surely. 

Simple generalizations 

There are several ways in which this problem can be altered to admit new analyses . I 
consider four here, two in which the problem is made more difficult by relaxing the 
assumptions about the Vizier, and two in which the problem is made easier (though 
not simpler) by relaxing the requirement on the question. 

First, we consider the problem of identifying the Vizier when there is at least one 
other option for his nature. Along with knights and knaves,  the standard other char
acters in the genre are alternators ,  who tell the truth and lie alternately on successive 
questions, and normals, who freely do as they please. 

If the problem is to identify whether the Vizier is a knight, a knave, or an alternator, 
a very simple method is available. First, any question with an undetermined answer 
is asked twice; "Do you like your coffee black?" for example. Alternators will be 
picked out immediately by their inconsistency. If the Vizier were discovered not to 
be an alternator, we would be in the situation of Smullyan's  original problem, and 
my solution could be applied. Since this algorithm is identical to the previous one, 
except for the addition of two questions, it will also have a finite expected number of 
questions (if we use the first method) or guaranteed termination (if we use the second 
method) . No algorithm with a bound on the number of questions can succeed, since 
any algorithm that solves this problem would certainly have solved the original. 

The interrogator' s  situation is very much the worse if the Vizier might be a normal, 
that is ,  if he is free to respond to questions in any way he pleases .  Distinguishing a 

normal from a knight or a knave is impossible because, with no restrictions on his re
sponses, he could impersonate a knight, answering each question exactly as a knight 
would. (Note that this is not the same as a normal deciding to always tell the truth ! 
Consider the Vizier 's  behavior under the question "Are you normal?" A normal im
personating a knight would say "no," while a normal telling the truth would say "yes ." 
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Confusing folks, these normals .)  Therefore, the interrogator could never know conclu
sively that the Vizier was not normal. An interesting question to consider is what types 
of limitations could be placed on normals to make them detectable by an algorithm of 
the type we have been discussing. Phrased alternately, how much freedom can be given 
to "subnormals" in the responses they are allowed to give, without allowing them to 
successfully impersonate knights or knaves .  This, however, will not be addressed here. 

Alternatively, we could change the problem by relaxing the constraints on the ques
tions used. In addition to the requirement that the answer not be predetermined, whose 
importance to the heart of the problem was discussed at length, we have required that 
a question be answerable and that it be yes-or-no. We now relax each condition in turn, 
beginning with the latter. 

If the interrogator is permitted to ask questions with more than two possible an
swers, much of our argument breaks down. First, although knowledge of an answer 
and a response to the same question determine the nature of the Vizier, it is no longer 
the case that knowledge of the nature of the Vizier and either the answer or the re
sponse to a question determines the other. Worse, the proofs that eliminate bounded 
solutions are no longer valid. In particular, the breakdown into two cases fails. Con
sider as an example a multiple-choice question with answers/responses A, B, and C. If 
one single question is to determine the nature of the Vizier, there are now six cases to 
consider instead of two: 1 .  Either the response A or B is given and the Vizier is a knight or the response C is 

given and the Vizier is a knave. 

2. Either the response A or C is given and the Vizier is a knight or the response B is 
given and the Vizier is a knave. 

3 .  Either the response B or C is given and the Vizier is a knight or the response A is 
given and the Vizier is a knave. 

4. Either the response A is given and the Vizier is a knight or the response B or C is 
given and the Vizier is a knave. 

5. Either the response B is given and the Vizier is a knight or the response A or C is 
given and the Vizier is a knave. 

6. Either the response C is given and the Vizier is a knight or the response A or B is 
given and the Vizier is a knave. 

None of these predetermines the answer. Therefore, the proof that success is impossi
ble in a single question does not carry over. 

A one-question solution can indeed be found if the available responses are under
stood to be, for example, all synonyms of "yes" or "no" (responses such as "affir
mative," "absolutely," and "negative") .  The question, "Will you answer 'yes ' to this 
question?" suffices to identify the Vizier. A knight could answer with "yes" or any 
word meaning "no," while a knave must answer with a synonym of "yes" other than 
"yes" itself. Also, this question is legal, since the truthful answer (whether "yes" will 
be said) is not determinable in advance. 

If the interrogator is permitted to ask questions that need not necessarily be answer
able, then there are three possible responses: "yes," "no," and silence. (We assume that 
the Vizier will always answer if he can, or else the problem is trivially unsolvable be
cause the Vizier can refuse to answer any questions . )  By the argument of the preceding 
paragraph, we no longer have a proof that a solution is impossible with a bound on the 
number of questions .  In fact, a one-question solution is available: "Are you going to 
respond 'yes' to this question?" A knight can respond to this any way he pleases and 
still be honest, while a knave cannot respond either way without unwittingly being 
honest, so he must hold his tongue. Thus the question succeeds . Furthermore, it is le-
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gal, because the same analysis shows that the correct answer is not determined, since 
a "yes" response is possible but not guaranteed. Therefore with this modification, the 
problem has a one-question solution. 

The above generalizations, while not as provocative or significant as the original 
problem, do contribute at least one important result, in particular the treatment of not
necessarily-answerable questions .  Looking retrospectively over this analysis, the vari
ety of issues confronted by the problem of King Zorn's Vizier is quite surprising. 

Acknowledgment. The author wishes to thank the referees for the reality check and helpful suggestions. 

REFERENCE 
1 .  Raymond M. Smullyan, Satan, Cant01; and Infinity. Knopf, New York, 1 992. 

Letter to the Ed i tor  

Dear Editor: 
I enjoyed James Tanton's  Proof Without Words of a little known property of 

equilateral triangles in a recent issue of the MAGAZINE [2] . Readers may be 
interested to know that the result illustrated is known as Viviani 's Theorem, after 
Vicenzo Viviani ( 1 622-1703) [1] . Another proof (also without words) of this 
theorem appeared previously in the MAGAZINE [3] . 

Roger Nelsen 
Lewis and Clark College 
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Put your wallet on the table next to mine. The game is this :  The person whose wallet 
has less money wins all the money in the other person' s  wallet. Do you want to play? 

You might think along these lines : "I don't  know how much money that other wallet 
has, and I 'm not even sure how much is in mine. If I have more money, then I ' ll lose it, 
but if I have less ,  I ' ll win the larger amount. I have no idea what the odds are, but since 
I stand to win more money than I can lose, it seems like a good game." Upon further 
thought, you realize that both players are probably thinking the same thing ! Can both 
be cmTect? 

How can a game favor both players? It can ' t !  In any two-person, zero-sum game 
(where one person wins what the other person loses),  it is not possible for the game to 
be advantageous to both players . Believing that the wallet game favors both players is a 
paradox, one discussed by Martin Gardner [3] . A variation of this game was originally 
posed by Kraitchik [1] where the person with the greater amount in her wallet gives 
the difference to the other. 

What if you and I decide to play this game day after day? We will need to establish 
a few more rules, because it would not be a very interesting game if neither of us ever 
carried any money. Since we do not want to mandate a minimum amount that must be 
carried, we agree that on average (and in the long run) we will carry the same amount 
of money. How should you decide how much to carry each day? 

Kraitchik shows that if the amount of money each player carries is uniformly (dis
cretely) distributed between 0 and some large x (he uses the total amount of money 
that has been minted to date), then the game is fair (each player' s  expected payoff is 
zero).  Gardner notes that this does not explain the source of the paradox. Merryfield, 
Viet, and Watson [2] argue that the source of the apparent paradox is that the players 
do not take into account the probabilities of winning and losing. They argue that if the 
amounts of money in the players ' wallets are determined by independent, identically 
distributed random variables , then the game is also fair. Hence, the game is fair when 
the players are required to use the same distributions. 

3 78 
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It is natural to ask if requiring the players to carry the same amount on average might 
also ensure a fair game. When "on average" is interpreted as requiring both players ' 
distributions to have the same mean, Merryfield, et al. point out that the game may not 
be fair. In fact, they give an example that shows it is possible to have a smaller mean 
than one's  opponent and still be at a disadvantage (that is, have a negative expected 
payoff). At the end of their paper, they pose the following question: 

If we suppose that the distributions of players A and B are required to have the 
same means, is there a strategy that player A could adopt to have a winning edge? 
In other words, is there a preferred distribution (or a winning strategy)? [2] 

The answer to this question depends upon whether knowledge of an opponent' s  
strategy, not just the mean, is assumed. In  this article, we show that if  a player knows 
her opponent's strategy, then she can construct a winning strategy which has the same 
positive mean or median as her opponent. This implies that there is no optimal strat
egy (or Nash equilibrium) when players are restricted to use strategies with the same 
mean or median. We consider both the discrete and continuous cases.  Throughout, we 
assume that players ' distributions are independent. 

Discrete distributions Consider an example using discrete distributions. Suppose 
players A, B, and C use strategies given by independent random variables X, Y, and Z, 
respectively. Suppose X places probability 1 on $2, Y places probability 1 /2 on both 
$ 1 and $3 ,  while Z places probability 3/4 and 1 /4 on $ 1 and $5 ,  respectively. Notice 
that the mean of each distribution is $2. Using the notation developed by Merryfield, 
et al. [2] , let W A/ B be the random variable returning the amount of money that player A 
wins (or loses) when playing against player B,  that is, 

{ -X if X > Y 
WA/B = y �f X < y 

0 1f X = Y. 

If players A and B use strategies X and Y, respectively, X is preferred to Y, denoted X >- Y, if and only if E(WA;s ) > 0. 
Suppose players A and B play the Wallet Game. Player A loses $2 when player B 

carries $ 1 and wins $3 when B carries $3 .  Player A ' s  expected payoff against player B 
is E(WA;s ) = � (-2) + � (3) = � · Thus, strategy X is preferred to strategy Y .  

The following matrix, which i s  similar to one used b y  Kraitchik [1] , is used to 
compute E(Ws;c ) .  The {i , j) 1h entry of the matrix, mij , is the amount that player B 
wins or loses when carrying y; in his wallet, while player C is carrying z j in her wallet; 
this occurs with probability p; qj . 

B/C 

Po =  1 /2 
Pt = 1 /2 

Yo =  1 
Yt = 3 

qo = 3/4 ql = 1 /4 
zo = 1 Z t  = 5 

0 5 

-3 5 

Calculating E(Ws;c) requires summing the products of the matrix entries and their 
probabilities ; in this case, 
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and Y >- Z. Finally, if players A and C play, then E(WA;c) = � (  -2) + i (5) = -i  
and Z >- X. 

The lack of transitivity of X >- Y,  Y >- Z, and Z >- X suggests that there may not 
be a "best" strategy in the discrete case when both players are required to have the 
same positive mean. The following proposition confirms this, answering the question 
posed by Merryfield, et al. [2] , by showing that there is no distribution that is preferred 
to all others, that is, there is no optimal distribution. (Recall that Y has finite support if 
positive probability is placed on a finite number of values . )  

PROP O S ITION 1 . For any discrete random variable Y with finite support, there 
exists a discrete random variable X with JJ.x = JJ.y such that X >- Y. 

Proof Suppose player A knows that player B carries an amount of money given 
by the random variable Y whose probabilities, q; , are distributed on a finite set of 
monetary values y; ,  such that y0 = 0 and y; < Yi+ I for all i ::::: n .  Since the mean of Y ,  
JJ.y ,  is positive, i t  follows that q0 i= 1 .  

We construct for player A a random variable X that defeats Y .  Player A ' s  strategy is 
to win almost every game; however, when player A loses, she forfeits a large amount 
of money. Interestingly, player A need only place positive probability on three values, 
regardless of the complexity of player B ' s  distribution. Define X by the distribution of 
probabilities p; on monetary values x; as follows :  Po = q0 on x0 = 0, p1 on x1 = �YI . 
and P2 = 1 - Po - PI on x2 , where PI  and x2 satisfy the following conditions, 

( 1 - Po)JJ.y 
----,--=-----'---- < PI  < 1 - Po and 
JJ.y + � ( 1 - Po)YI 

X2 = 
I fJ.y - 2P1 Y1 

1 - Po - PI 

Notice that p1 exists since p0 = q0 i= 1 .  Also, x2 is defined such that JJ.x = JJ.y .  
As in  the example above, i t  is convenient to  view the Wallet Game in  matrix form. 

Although we do not know how x2 compares to the y; s , we assume the worst-case 
scenmio for player A, that is, x2 is greater than the largest monetary value that player B 
carries, Yn · As before, the matrix entries are payoffs to player A .  

qo q] q2 q3 . . .  qn 
AlB Yo YI Y2 Y3 . . .  Yn 

Po xo 0 YI Y2 Y3 . . .  Yn 
PI X] =  yi /2 -XI YI Y2 Y3 . . .  Yn 

P2 X2 -X2 -X2 -X2 -X2 . . .  -X2 

The expected values of the first column and first row cancel because 

Since x1 < y; when i > 0, the remaining entries in the second row yield a positive 
contribution to the expected value for player A in the amount of PI (qi YI + q2Y2 + 
· · · + q11 y11 ) , or p1JJ.y . In this worst-case scenario, x2 > Yn implies that the remaining 
entries in the third row contribute the following to the expected value of player A 
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Hence, we have 

1 
E(WA;B ) � Pt fl,Y - [f.J,y - lP tYt l ( l - qo) > 0, 

by the definition of  p 1 • Therefore, X >- Y.  • 

In our earlier example, and as indicated in the above proposition, playing the mean 
with probability one can be defeated. However, it is a winning strategy against all other 
symmetric, discrete distributions. In this case, player A loses half of the time with loss 
f-1, x, but wins half of the time with a gain that is greater than f-1, x .  Hence, the expected 
payoff is positive. In the next section we focus on continuous density functions and 
examine the roles of both the mean and median. 

Continuous Density Functions Suppose that random variables X and Y have con
tinuous density functions f and g, respectively. Recall that a continuous density func
tion never places positive probability on a single value; that is ,  the probability of a 
player carrying a specific amount of money is zero. As in the discrete case, if g is 
a symmetric density function then playing the mean with probability one (or equiva
lently, the median) is preferred to g. Although playing the mean with probability one 
does not satisfy our restriction to continuous density functions, this idea is easily mod
ified to show the existence of a continuous density function with the same mean (and 
median) that defeats the original symmetric density function. 

We do this in the following proposition, considering nonsymmetric, continuous den
sity functions where players are required to have the same median. Denote the median 
of the random variable X as m x .  Thus it is equally likely that the player has more than 
or less than mx .  

PROP O S ITION 2 .  For any random variable Y with a continuous density function, 
there exists a random variable X with a continuous density function where mx = my 
and X >- Y. 

Proof Suppose player A knows that player B carries an amount of  money given 
by the random variable Y with probability density function g .  The discrete response 
X = my ,  where my  is the median of Y, is preferred to Y. This follows since the median 

my loses half of the time with a loss of my  and wins half of the time, averaging a payoff 
greater than my .  Therefore, the expected payoff for player A is positive. However, this 
is a discrete distribution. To construct a continuous distribution, playing the median can 
be considered as the limit of a sequence of uniform distributions where the variances 
tend to zero . Since the expected value of playing the median is positive, there exists a 
uniform distribution with m x = my  and positive expected value. • 

Since there is no optimal continuous density function when the distributions are 
required to have the same median, let 's  consider the case where they have the same 
mean. The following proposition shows that there is no optimal continuous density 
function in this case either. The proof is constructive, as in the discrete case, and the 
motivation for the strategy is similar. Once again, Player A ' s  strategy is to win more 
frequently than player B,  while infrequently losing a large sum of money. We construct 
a density function that matches the opponent on [0, my ] ,  and is piecewise uniform on 
both [m y ,  m y + E] and [n - E, n] ,  where n and E are selected such that f.J,x = f.J,y and 
X >- Y .  

PROP O S ITION 3 .  For any random variable Y with a continuous density function, 
there exists a random variable X with a continuous density function where f.J,x = f.J,y 
and X >- Y. 
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Proof Suppose player A knows that player B carries an amount of money given by 
the random variable Y with continuous density function g .  Suppose g has mean 
fLy and median my .  As in the discrete proof, the goal is to construct a density 
function that defeats g while having the same mean. Let y be the average condi
tional expected value of g conditioned on being in the interval [my ,  oo), that is, 

= roo ( ) d I roo ( ) d = 2 roo ( ) d Y Jmy yg Y Y Jmy g Y Y Jmy yg Y Y· 
Let X be a random variable with density function f defined by 

on [O , m y ]  { g (x) 

f (x) � 

I 
on (m y ,  m y + E] 
on [n - E ,  n] 
elsewhere, 

where 0 < E < 1 is selected so that n - E > my + E ,  where 

y 1 my  
n = - + E - - - - + my ,  

E 2 E 
and so that the following inequality holds : 

2y ( 1 - E) 100 g (y) dy > (r + E2 - � - my + myE) my+• 2 

1
my+• 

+ 2(my  + E ) ( 1 - E) g (y) dy . my ( 1 )  

Notice that the left side of ( 1 )  converges to y as E approaches zero, while the right 
side converges to y - my .  Also, n grows without bound as E approaches zero. There
fore, a sufficiently small E can be chosen to satisfy both inequalities . Although ( 1 )  and 
the definition of n appear complex, selecting such an E guarantees that /Lx = fLy and 
X � Y as shown below. 

Since f is equal to g on [0, my ]  and f is composed of piecewise horizontal line 
segments on (my ,  oo) , then, by the definition of n ,  

[my ( 1 - E ) ( E ) 1 ( E ) fLx = Jo yg (y) dy + � E my + 2 + 2E n - 2 

ry y roo = Jo yg (y) dy + 2 = Jo yg (y) dy = fLy .  

To see that X � Y,  we employ a matrix again. As in the previous proof, we consider 
the worst-case scenario for player A .  For example, when X is in the interval [n - E ,  n] 
and Y is in (m y + E ,  oo) , we assume that X loses n .  Also, when X is in [my ,  m y + E] 
and Y is in (my + E ,  oo) then Y loses, on average, more than y .  In the following matrix, 
the entries are payoffs to player A .  Let y1 and y2 be the average conditional expected 
values of g conditioned on being in (my ,  m y + E] and (my + E ,  oo) , respectively. 

I J,'ny+• ( ) d fn�+• g (y) dy 2 my g Y Y 
AlB [0, my ]  (my ,  my + E] (my + E ,  oo) 

1 [0, my ]  0 Y1 Y2 2 
1 -E [my ,  m y + E] - (my + �) - (my + E)  y 2 • [n - E , n] - (n - �) -n -n 2 
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The contribution to the expected value from the first row is  

Y (1my+E ) Y (100 ) y 
2
1 

g (y) dy + ; g (y) dy = 4 '  my my+E 
which cancels with the contribution from the first column since 

� - C � E ) (my + �) - � ( n - �) = 0, 

3 8 3  

by definition of  n .  Computing the contribution to the expected payoff from the remain
ing entries of the matrix, player A wins (or loses) 

nE ( 1 E ) 1my+E ( 1 E ) 100 
4 - (my + E) -2- g(y) dy + y -2- g(y) dy . my my+E 

Substituting for n, (2) is positive if 

2y ( 1 - E ) 100 
g (y) dy > (r + E2 - � - my  + myE) my+E 2 1my+E 

+ 2(my  + E ) ( l - E ) g (y) dy . my 
This inequality holds by the selection of E .  Therefore, X >- Y .  

(2) 

• 

Game-theoretic conclusion Let's interpret the propositions in this paper game
theoretically. A pair of strategies is a Nash equilibrium if neither player, given knowl
edge of her opponent's  strategy, can improve her outcome by deviating from her 
strategy. Since the Wallet Game is a zero-sum game, at least one player must have a 
nonpositive expected payoff. Using the constructions in the propositions, this player 
can change her (discrete or continuous) distribution to yield a positive expected payoff. 
So, there does not exist a Nash equilibrium in any of the cases we considered. 

In game theory, the fundamental solution concept is the Nash equilibrium. Con
sequently, the fact that there is no optimal strategy, hence no Nash equilibrium, may 
seem troubling. It is interesting to note that while the existence of Nash equilibria is 
often proved by variations or extensions of the Kakutani Fixed Point Theorem, this 
theorem does not apply here as the hypotheses require the set of strategies to be com
pact [4] . Neither the space of all discrete random variables with fixed means nor the 
space of all continuous distributions with fixed medians or means are compact. 

So what should you do when someone suggests playing the Wallet Game? Since 
the standard game-theoretic assumption of knowing your opponent's  strategy is highly 
unlikely, the authors advise readers to play the game at their own risk. 
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Extriangles and Excevians 

L A R R Y H O E H N  
Austi n Peay State U n ivers ity 

C larksvi l l e, TN 37044 

The configuration of three squares drawn on the sides of a right triangle is familiar 
from the Pythagorean theorem. This configuration is shown in FIGURE 1 along with 
three shaded triangles; however, as we continue, we relax the assumption that /::,A B C  
i s  a right triangle . We call the shaded triangles extriangles of t:, A B C  i n  a manner 
somewhat analogous to excircles of a triangle . In this paper we consider selected ce
vians of these extriangles and investigate their relationships to /::,A B C .  

Recall that cevians are lines through one vertex of a triangle and one point of the 
opposite side. Named in honor of Giovanni Ceva, these include medians, altitudes, and 
angle bisectors . The perpendicular bisectors of the sides are not, strictly speaking, ce
vians; however, they, like the other triples of lines mentioned, are concurrent, with an 
interesting point of intersection, the circumcenter of the triangle. Along with the ce
vians of ex triangles, we also consider the perpendicular bisectors of the newly created 
sides. 

L 

F E 

D 

Figure 1 Pythagorean configu rat ion 

First we recall some well-known properties of cevians of triangles. The three 
medians, the three angle bisectors, the three altitudes, and the three perpendicular 
bisectors of the sides of any triangle are concurrent, respectively, at the centroid, the 
incenter, the orthocenter, and the circumcenter of any triangle. Moreover, the ortho
center, centroid, and circumcenter are collinear and determine the Euler line of the 
triangle. These properties and similar facts can be found in standard geometry books 
such as Coxeter and Greitzer [1, p. 1 9] .  

Each extriangle enjoys these concurrency and collinearity properties, of course, but 
we are interested in finding relationships that exist when we consider one cevian from 
each ex triangle. In most cases, we consider cevians of the ex triangles that pass through 
the vertices of the original triangle /::,A B C .  For instance, an exaltitude of /::,A B C  is 
an altitude of an extriangle through one of the points A,  B, or C. An exangle bisector 
is also an angle bisector of the original triangle. We would have liked to use the term 
exmedian, but one referee pointed out that this term is already used for a line through 
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the vertex of a triangle which is parallel to the opposite side [3, p. 1 76] , so we will use 
exomedian for the median of an extriangle. 

An experpendicular bisector of D.AEC does not in general pass through a vertex 
of D.AEC,  but is the perpendicular bisector of the side of an ex triangle that is opposite 
a vertex of D.AEC.  In FIGURE 5, AN is an exaltitude, A P  is an exomedian, J P is 
an experpendicular bisector, and AI (not drawn) is an exangle bisector of D.AEC for 
extriangle D-ADE.  All of these various lines will be called excevians of D.AEC.  

Concurrency of  excevians 

THEOREM 1 .  The three exaltitudes of any D.AEC are concurrent at the centroid 
of D.AEC. 

L 

K 

D 

F E 

Figure 2 Concu rrency of exalt i tudes 

Proof Let AN be an exaltitude of D.AEC (that is, an altitude of extriangle 
D-ADE), and let it meet EC  at S as shown in FIGURE 2 . We wish to prove that AS  
i s  a median of  D.AEC.  Since LEAS  and LEAN are complements and since LAEN 
and LEAN are complements, then LEAS � LAEN.  Next construct a point P on  DE 
such that E P  = AS.  Then D.EAS � D.AEP by  the side-angle-side congruence for 
triangles. Therefore L E SA � L A P  E and E S = A P .  

In the same manner, note that L C A S  � L A D N  and construct a point P2 on DE 
such that P2D = AS .  Then D.CAS � D.ADP2 , which implies that LCSA � L A P2D 
and CS = A P2 • Therefore m L A P  E + m L A P2D = m L E SA + mLCSA = 1 80° so 
that P = P2 • Since E P  = AS =  P D,  then P is the midpoint of DE .  

Since ES  = A P  and SC = A P2 = A P ,  then ES  = SC.  Thus S is the midpoint of 
EC which implies that AS is a median of D.AEC.  

Repeating this argument, we  find that the exaltitudes at E and C of  D.AEC are 
also the medians of D.AEC.  Since the medians of any triangle are concurrent at the 
centroid G, the three exaltitudes are concurrent at G .  • 

It is worth noting that since D.EAS � D.AE P  and D.CAS � D.ADP,  the extriangle 
D-ADE and the original D.AEC have equal areas . Indeed, all three extriangles have 
the same area. 

As an aside we note that this proof is reminiscent of a theorem of Brahmagupta [1 ,  
p. 59] : If a quadrilateral is cyclic and has perpendicular diagonals [orthodiagonal], 
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then the perpendicular from the point of intersection of the diagonals to a side bi
sects the opposite side . It is easy to show that quadrilateral BCDE of FIGURE 2 is 
orthodiagonal, but it is not necessarily cyclic. 

THEOREM 2. The three exomedians of any 6.ABC are concurrent at the orthocen
ter of 6.ABC. 

L 

K 

D 

Figure 3 Concurrency of exomed ians  

Proof Let A Q be the exomedian of 6.ABC that is also the median of extriangle 
6.ADE;  let A Q  meet BC at T (see FIGURE 3) .  Construct the exaltitude AU that 
meets BC at V .  By the proof of Theorem 1 ,  A V is a median of 6.ABC and 6.B V A �  
6.A QE.  Thus L E VA � L A Q E  so that m L VTA + mLTAV  = mL QUA + mLUAQ .  
But LT  A V  i s  congruent to L U  A Q  (vertical angles). Therefore L V T  A � L QU A .  
Since L QUA i s  a right angle, L V  T A i s  as well, so AT  i s  an altitude of 6. A B  C .  

Similarly, the exomedians through B and C are shown to b e  altitudes of 6.ABC.  
Since the altitudes of  any triangle are concurrent at the orthocenter H,  then the three 
exomedians are concurrent at H .  The referees observed that because of symmetry, 
Theorem 1 and Theorem 2 are equivalent. • 

THEOREM 3 .  The three exangle bisectors of any 6.ABC are concurrent at the in-
center I of 6.ABC. 

The proof of Theorem 3 is trivial so we turn to the fourth of our cevians. 

THEOREM 4. The three experpendicular bisectors of any 6.ABC are concurrent. 
Proof We begin with 6.ABC,  as in FIGURE 4. Let M' be the midpoint of AB and 

extend median C M' to a point C such that M' C = C M' . Join C and A to form 6.C AC 
which has sidelengths of  b, a ,  and 2m c .  Next rotate 6.C AC 90° clockwise about center 
A to get 6.SAT .  Thus A T  .l.BC,  AS.l.AC, and T S.l.CM'. Translate 6.SA T so that A 
ends at G forming 6.B'GA' .  Thus we note that if we start with 6.ABC and construct 
GA'.l.BC with GA' = BC and construct GB'  .l.AC with GB'  = AC, then A' B' .l.GC 
and A' B' = 2mc . 

If we repeat the above process on the other sides of 6.ABC,  we obtain 6.A' B'C' 
with sides of length 2ma , 2mb ,  and 2mc .  Therefore 6.A'GB' is obtained from extri
angle 6.LCM (see FIGURE 5) by translating it in the direction CG so that C ends 
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L 

A' 

D 

F 

Figure 4 Rotation and  tra n s l at ion Figure 5 Concu rrency of experpend i c u l a r  b i 
sectors 

at G. Since A' B' l_GC, then LA' B' M is a rectangle. In the same manner D.B' GC' 
and D.C'GA' are translates of extriangles D.DAE and D.FBK,  respectively, so that 
DB' C' E and F C' A' K are rectangles . 

Next construct the perpendicular bisectors of DE, F K,  and LM.  Since these are 
perpendicular bisectors of the sides of D.A' B'C' , then they are concurrent at the cir
cumcenter J .  Hence the experpendicular bisectors of D.ABC are concurrent. • 

As an aside we note the nice dual relationship between D.ABC and D.A' B'C' . They 
have a common centroid, the sides of each are perpendicular to the medians of the 
other, and the lengths of the medians of each are proportional to the lengths of the sides 
of the other. It is of interest to compare this relationship with the dual relationships of 
triangles described by Pedoe [4] . 

The discussion also provides a neat proof of the relationship between the area of 
a triangle and the area of the triangle formed by its medians. Since D. A' B' C' has 
sides of length 2ma , 2mb ,  and 2mc ,  we see that the area of D.A' B'C' is four times 
that of the triangle whose sides have the lengths of the medians of D.ABC.  Since 
area(D.A' B'C') = 3 area(D.ABC), then the triangle whose sides are the medians has 
3/4 the area of D.ABC.  Moreover, if a = (ma + mb + mc)/2, then Heron's area for
mula applied to the triangle of medians leads to the expression for the area of D.ABC 
in  terms of its medians; namely, 

4 
area(D.ABC) = 3.Ja (a - ma ) (a - mb ) (a - me) . 

This formula can also be found in Hobson [2, p. 20 1 ] ,  with a trigonometric proof. 

Collinearity Recall that the orthocenter H, centroid G, and circumcenter 0 of any 
triangle are collinear, all lying on the Euler line. What collinearity might be possible 
among the points of concurrency for the exaltitudes, G, exomedians, H, exangle bi
sectors, I, and experpendicular bisector J ?  It is known that in general I does not lie 
on the Euler line [ 5] ; might there be a line that contains I, G, and J ?  In Fr G URE 5 ,  
these points appear collinear. 
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Our experiments with the software Geometer 's Sketchpad seem to indicate that the 
incenter I lies on the line JG.  Altering b,.ABC to have sides of various lengths we 
find that JG + GI - J I =  0.000 inches, most of the time, and 0.00 1 inches, rarely. 
It is tempting to guess that the 0.00 1  must be due to roundoff errors . 

Alas , empirical evidence leads us astray. A referee provided the following excellent 
counterexample: If b,.ABC has vertices (6, 0) , (0, 0) , and (0, 1 2) ,  then G = (2, 4) , 
J = ( 1 ,  1 1 ) ,  and I = (9 - 3 .J5, 9 - 3 .J5) . Since the slopes of GJ  and J/ are not 
equal, then G, J, and I cannot be collinear. 

For readers interested in investigating the location of J ,  we mention this :  Since J 
and G are the circumcenter and centroid, respectively, of b,.A' B'C' ,  JG is the Euler 
line of this tliangle . 

Acknowledgment. The author wishes to thank the referees for their knowledge and assistance. 
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Boxlike Domains in the Complex Plane 

J O H N A. F E R O E  
B E N J A M I N  A. L O T T O  

C H A R L E S I .  S T E I N H O R N  
Vassar Col l ege 

Poughkeepsie, NY 12604 

The interplay between the geometry of a domain in the complex plane and the 
analytic properties of holomorphic (sometimes called analytic) functions defined on 
that domain is central in complex analysis. A fundamental example of this interplay 
is the following characterization of simply connected domains given by one version 
of Cauchy's Theorem and Morera's  Theorem: A domain G is simply connected if and 
only if JY f = 0 for every holomorphic function f defined on G and every simple 
closed rectifiable curve y in G. Other geometric properties of domains can also be 
characterized analytically. For example, convex and starlike domains can be identified 
by examining the analytic properties of their Riemann maps [1, pp . 40-43] .  

In this paper, we introduce a new class of domains that arise naturally from a gen
eralization of one proof of Cauchy's Theorem. We call these boxlike domains. After 
making the appropriate definitions and proving the generalization, we give a geomet
lic characterization of boxlike domains. Finally, we derive from this characterization 
a heuristic for identifying boxlike domains just by looking at them. 

The inspiration for the definition of boxlike domains comes from the treatment 
of Cauchy's Theorem in one widely used Complex Analysis text. It starts with the 
following Lemma [2, pp . 1 23 ,  1 25-127] . We adopt the convention for the rest of this 
paper that rectangle means rectangle with sides parallel to the coordinate axes. 
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LEMMA 1 .  Suppose that y is a rectangle and that f is analytic on a domain that 
includes y and its interior. Then fr f = 0. 

The proof of Lemma 1 uses an elegant idea due to Goursat, in which the rectangle 
is subdivided repeatedly. In the limit, the subdivided rectangles intersect in a single 
point z. The existence of f' (z) ,  combined with the right estimates, leads to the desired 
result. 

From Lemma 1 ,  we can easily derive Cauchy's Theorem for a disk. 

THEOREM 1 .  Suppose that f is holomorphic on a disk D. Then f has an anti
derivative on D and fr f = 0 for any closed curve y that lies in D. 

The proof of Theorem 1 starts by defining a function F(z) at a point z in D as 
the integral of f along a rectangular path from the center of the disk to z. Lemma 1 
enables us to write the difference quotient (F (z + b.z) - F(z) ) / b.z as an integral of f 
over a rectangular path from z to z + b.z. Standard estimates show that this converges 
to f (z) as b.z tends to zero. Hence F' (z) = f (z) .  An application of the Fundamental 
Theorem of Calculus now shows that integrals of f over closed paths must equal zero . 

What property of the disk makes this proof work? When we draw a rectangle con
necting the center of the disk to any other point in the disk, the rectangle and its interior 
lie entirely within the disk and Lemma 1 can be applied. If G is a domain that enjoys 
this same property, then the proof of Theorem 1 applies verbatim and yields Cauchy's 
Theorem for G.  Here are the relevant definitions. 

DEFINITION 1 .  Given two points z and w in the complex plane, the rectangle 
spanned by z and w is the rectangle (with sides parallel to the coordinate axes) that 
has opposite corners at z and w. We write R (z ,  w) for this rectangle together with its 
interior. 

If z and w lie on a line parallel to the one of the coordinate axes, then R (z ,  w) 
degenerates into a line segment. We still consider this to be a rectangle, which happens 
to have zero height or width. 

DEFINITION 2. A domain G is said to be boxlike with respect to a point z if 
R (z ,  w) C G for every w in G. In this case, we will call z the boxlike center of G. 

Finally, we say that a domain G is boxlike if it is boxlike with respect to some point. 

Note that a domain may have many boxlike centers. A simple example illustrating 
this is an open rectangle, for which every point in the domain is a boxlike center. 

In view of the remarks preceding Definition 2, the proof of Theorem 1 yields the 
following, stronger result. 

THEOREM 2. Suppose that f is holomorphic on a boxlike domain G. Then f has 
an antiderivative on G and fr f = 0 for any closed curve y that lies in G. 

Have we really accomplished anything by making this generalization? We address 
this question by deriving a characterization of boxlike domains. As one consequence 
of this characterization, we see that the class of boxlike domains includes a whole 
lot more than just disks . Hence Theorem 2 is a significant generalization of Theo
rem 1 .  As a second consequence, we derive a simple, practical, and effective method 
for recognizing whether a given domain is boxlike, making Theorem 2 easy to apply 
to particular domains. 

Before proceeding to the characterization, let's get a better idea of what boxlike 
domains look like. First, recall that a domain is starlike with respect to a point z if any 
segment that connects z to another point in the domain lies entirely within the domain. 
Clearly, a domain that is boxlike with respect to z is also starlike with respect to z .  
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To see this, let w be any other point in the domain. Then R(z , w )  i s  contained in the 
domain. But the segment that connects z to w is a diagonal of R(z ,  w ) .  Hence that 
segment is contained in the domain, which tells us that the domain is starlike. 

Second, recall that a domain is convex if any segment that connects two points in the 
domain lies entirely in the domain. A convex domain is clearly starlike with respect 
to any point in the domain. Does convexity necessarily imply a boxlike nature, or 
conversely? In fact, neither implies the other as the examples in FIGURE 1 show. 

Figure 1 The dom a i n  on the left i s  box l i ke (with respect to its "center") but not convex . 
The dom a i n  on the r ight i s  convex but not box l i ke .  To see th is ,  observe that the rectang le  
span ned by any fixed point  and a su itab le  po i nt near the bou ndary of  the doma i n  i s  not 
conta i ned i n  the dom a i n .  

We are now ready to state and prove the above-mentioned characterization of box
like domains . 

The actual statement is somewhat technical looking, but the idea of the character
ization is quite simple. It says that a boxlike domain lies between the graphs of two 
functions that are defined on a common interval. (This way of thinking about domains 
in the plane is familiar from finding limits of integration in iterated integrals . )  The 
function describing the top must rise and then fall and the function describing the bot
tom must fall and then rise, with the two functions reversing course at the same point. 

THEOREM 3 .  Let G be a domain in the complex plane. Then G is boxlike with 
respect to the point zo = x0 + iy0 if and only if there exist extended real numbers 
a < b and extended real-valued functions f (x) and g (x) defined on (a ,  b) such that 

1. - oo  ::=: a < x0 < b ::=: oo; 
2. g (x) < Yo < f (x) on (a ,  b); 
3. f (x) is monotonic increasing on (a ,  x0] and monotonic decreasing on [x0 , b); 
4. g (x) is monotonic decreasing on (a ,  x0] and monotonic increasing on [x0 , b); and 
5. G = {z : z = x + iy ,  a < x < b and g (x) < y < f (x) } . 

Proof Note that G is boxlike with respect to zo if and only if G - zo = {z - zo : 
z E G} is boxlike with respect to 0, so we may assume without loss of generality that 
zo = 0. 

To prove necessity, suppose that there exist a < b and f(x) ,  g (x) that satisfy 
conditions 1-5 .  Let z = x + iy be a given point in G. Assume first that x :::: 0 and 
y :::: 0. Then x < b and y < f (x) by 5. Let w = u + i v  be any point in R (O, z ) .  
Then 0 ::=: u ::=: x and 0 ::=: v ::=: y .  Since f is decreasing on [0 , b) ,  i t  follows that 
f(u) 2: f (x ) .  Hence g (u) < 0 ::':: v ::':: y < f (x) ::':: f (u ) ,  the first inequality holding 
by 2. It follows that w E G by 5. The other three cases, where x ::=: 0 and/or y ::=: 0, are 
handled similarly. 
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As to sufficiency, suppose we are given a domain G that i s  boxlike with respect 
to 0. Let z = x + iy be any point in G. Since R(O , z) c G, it follows that the closed 
interval with endpoints 0 and x along the real axis is contained in G. We conclude that 
G n lR is an open interval. Define a and b to be the left and right endpoints of this 
interval; we allow for the possibility that a = - oo  and/or b = oo. Since 0 E G,  we 
have a <  0 < b . 

Fix x E (a ,  b) .  Using the definition of boxlike as in the preceding paragraph, it 
follows that the set {y : x + iy E G} is an open interval. Define g (x)  and f (x)  to be 
the left and right endpoints of this interval. Again we allow for the possibility that 
g (x) = - oo  and/or f (x)  = oo. Since x itself is in G,  we have g (x)  < 0 < f (x ) .  

We have established conditions 1 and 2 of  the theorem; condition 5 follows im
mediately from the previous two paragraphs. To finish the proof, we show that f (x ) 
is decreasing on [0, b) ; similar arguments establish the other monotonicity properties 
stated in conditions 3 and 4. Suppose that 0 :::: x < x' < b. If y < f (x') , then the def
inition of f (x') yields that x '  + iy E G.  But x + iy E R(O, x' + iy) c G since G is 
boxlike. Hence f (x ) � y by definition. Since y is arbitrary subject to the condition 
y < f (x ' ) ,  it follows that f (x) � f (x ' ) .  The proof is thus complete. • 

Note that we can reverse the roles of x and y to obtain a characterization of boxlike 
domains in terms of functions of y bounding the domain on the left and right; this is 
similar to reversing limits of integration in iterated integrals .  We leave the details to 
the reader. 

Theorem 3 allows us to construct more exotic boxlike domains. One such example 
is given in FIGURE 2. 

Figure 2 A com p l i cated boxl i ke dom a i n  

Now, using Theorem 3 ,  we describe the heuristic promised above for recognizing a 
boxlike domain G as boxlike or not just by inspection. 

Assume for the moment that G is a bounded domain. First, find vertical lines that 
bound G as closely as possible on the left and right, a step familiar from writing a 
double integral as an iterated integral. Let these best-bounding lines be x = a and 
x = b (if G is boxlike) . The boundary of G will touch each of these vertical lines in 
one or more points . If there are a pair of points that lie on the intersection of these lines 
with the boundary of G and share the same y-coordinate y0 , then y0 is the y-coordinate 
of a possible boxlike center. If no such pair exists, then G cannot be boxlike. 

Next we apply a similar procedure using horizontal lines that bound G as closely as 
possible on the top and bottom. As before, we look for a pair of points that are on the 
boundary of G,  on these lines, and line up vertically. If such a pair exists, they identify 
the x-coordinate of a possible boxlike center; if not, then G is not boxlike. 
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Figure 3 Th i s  u nbou nded boxl i ke dom a i n  touches x = - oo ,  the best verti cal  bou n d i n g  
l i ne on t h e  left, a t  a l l  y i n  [ 0 ,  1 ] .  The box l i ke center  i s  ident ified b y  t h e  heu r i st ic  to be 
0 . 5 i. 

If we've gotten this far, then we've identified a candidate for the boxlike center of G .  
The final step i s  to check that the boundary of G can be  described by  graphs of  func
tions f above and g below. If so, and if these functions obey the proper monotonicity 
conditions, then G is boxlike ! 

As one example of this heuristic, consider the domain on the right in FIGURE 1 .  In 
this case, the best-bounding vertical lines touch the domain at points that don't  align 
horizontally; hence, the domain cannot be boxlike. On the other hand, the domain in 
Figure 2 shows how easily a boxlike domain is identified using this heuristic-the 
best-bounding horizontal and vertical lines are shown, as are resulting lines that cross 
at a (in this case unique) boxlike center. 

An important point is that the functions f and g from Theorem 3 need not be 
continuous .  The example in FIGURE 2 uses discontinuous bounding functions. It is 
easy to see that a set G defined as in Theorem 3 is open if and only if f is lower 
sernicontinuous and g is upper semicontinuous. 

The same procedure works for unbounded domains, so long as we interpret the 
above terms appropriately. For example, if G is unbounded on the left, then the "best
bounding line" for G on the left is x = -oo. The domain is said to touch this line 
at y = c if there is a sequence Xn + iyn in G such that Xn --+ -oo and Yn --+ c. See 
FIGURE 3 for an example. 

As a final note, we should point out that Lemma 1 can be proved for triangles instead 
of rectangles, in which case the proof of Theorem 1 immediately yields Cauchy's 
Theorem for all starlike (and hence all boxlike) domains (see [3 ,  pp .  205-6] ) .  The 
pedagogical price paid for the triangular approach is that one needs to develop the 
finite intersection property for compact sets in JR2 • The rectangular approach, on the 
other hand, requires only the nested interval property in JR. 
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Proof Without Words:  The Weierstrass 
Substitution 
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Integrals of Periodic F unctions 
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Computing integrals of powers of the sine function is a standard exercise in cal
culus. Using integration by parts or some basic trigonometric identities , the student 
discovers that 

f . 1 . 1 
sm2 t dt = - 2  cos t sm t + 2 t + C ( 1 )  

and 

f . 1 . 2 
sm3 t dt = - 3  sm2 t cos t - 3 cos t + C .  (2) 
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Fmther investigation reveals that all even powers of sine have integrals containing 
periodic terms and a (nontrivial) linear term, whereas all odd powers of sine have 
integrals with only periodic terms . 

In this note, we show that the first integral is representative of the integral of any 
periodic function. Although this fact (Proposition 1 )  is not pointed out in any of the 
calculus textbooks we have studied, we feel that it is elementary enough and of suffi
cient usefulness in applications to be given attention in an elementary calculus course. 
As we show by examples, Proposition 1 can come in handy not only in knowing what 
to expect when we integrate a periodic function, but also in enabling us to introduce 
some qualitative aspects of differential equations (the existence of periodic solutions) 
at the elementary calculus level. 

Throughout, when we say that f is periodic of period T > 0, we mean that f : 
� --+ � satisfies f (t + T) = f (t) for all t ,  but not necessarily that T is the smallest 
positive period possessed by f. If f has period T, then we define the average value of 
f in the usual way, as 

1 ft+T 
f = - f (s) ds . 

T r 

Since f has period T,  the value of 7 does not depend on the choice of t E �
PROPOS ITION 1 .  If f  : � --+ � is continuous and periodic of period T > 0, then f 

f(t) dt = g (t) + ft + C,  

where g i s  a periodic function of period T. 

To prove the proposition, we let 

g (t) = 1' f(s) ds - ft . 

Then 

:t 
(g (t) + ft) = f(t) , 

which implies (3) .  Also, for any t E �, we have t+T 
g (t + T) = Jo f(s) ds - fT - ft t+T ft+T 

= Jo f(s)  ds - 1 f(s)  ds - ft 

= g (t ) ,  

which shows that g i s  periodic of period T .  

(3) 

• 

Since Proposition 1 is qualitative (rather than quantitative) in nature, it should be 
expected that applications of the Proposition will yield mainly qualitative information. 

Example 1 (Integrals of Powers of Sine) : By Proposition 1 ,  if n is a positive 
integer, then 

J sinn t dt = g (t) + mt + C,  
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where g is periodic of period 2n and m is the average value of f(t) = sin" t .  Since 
even powers of sine have positive average value and odd powers of sine have zero 
average value, the constant m that appears in the linear term will be positive when n is 
even and zero when n is odd. This agrees with the results shown in ( 1 )  and' (2) . 

Example 2 (The Harmonic Oscillator) : The motion of a unit mass attached to a 
spring is described by the differential equation 

y" + ay' + by =  0 ,  (4) 

where y (t) is the position of the spring at time t ,  -by is the force exerted on the mass 
by the spring, and -ay' the damping force exerted on the mass by the medium through 
which it is moving. (No other force, including gravity, is assumed to be present.) 
In elementary differential equations courses, the model (4) is often used to motivate 
the study of linear differential equations and linear systems . The usual approach first 
handles the case a = 0 (the undamped case) , showing that the mass exhibits sustained 
oscillations about its rest position (assuming also that b > 0) . Once this is done, it 
is shown that when a > 0, the mass eventually comes to rest (possibly via decaying 
oscillations) due to the damping force. In the setting of a differential equations course, 
the fact that the real parts of the roots of the characteristic equation of (4) are nega
tive shows that the mass approaches equilibrium when a > 0. In what follows, we use 
Proposition 1 to explain why equation (4) cannot have nontrivial periodic solutions if 
a ::/= 0. Our argument does not delve into the specific forms of solutions of (4) and 
hence does not yield the quantitative information that would follow from a more de
tailed analysis, but our approach does reveal the qualitative effect of a damping force. 

If y is a periodic solution of ( 4) with period T > 0, then y' is also periodic of 
period T. Multiplying both sides of ( 4) by y', we obtain 

y'y" + a  (yf + byy' = 0 .  

Integrating this from time 0 to any positive time t gives 

(y' (t) ) 2 - (y' (0) )2 + 2a 11 (y' (s) )2 ds + b (y (t) )2 - b (y (0) )2 = 0.  

Since (y')2 is periodic of period T, Proposition 1 implies 

11 (y' (s ) )2 ds = g (t) - g (O) + mt ,  

where g is periodic of  period T and m is the average value of  (y') 2 • This gives us 

(y' (t) ) 2 - (y' (0) ) 2 + 2ag (t) - 2ag (O) + b (y (t ) )2 - b (y (0) )2 = -2amt .  (5) 

Since the left-hand side of (5) is periodic of period T, then so is -2amt .  Of course, 
this is only possible if either a = 0 or m = 0. If a isn't zero, then m is, and in fact 
y' is identically zero (because m is the average value of (y') 2 , which is nonnegative) . 
This in turn implies that y is constant (i .e . ,  y is trivially periodic of period T) .  But 
then (4) reduces to by = 0. Hence, if we assume in addition that b ::/= 0 (which would 
be reasonable in a spring problem) , then it follows that y (t) = 0 is the only periodic 
solution of (4) . 

Finally, if a = 0, b ::/= 0, and y is a nontrivial periodic solution of (4) ,  then y cannot 
be of constant sign for all t (because integration of equation (4) from 0 to T would 
yield a contradiction) . Hence, we may assume without loss of generality that y (O) > 0 
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i s  the maximum value of y .  Equation (5) then gives us 

(y (t ) ) 2 = (y (0))2 - l  (y' (t )) 2 . 

If b < 0, then we would have (y (t) ) 2 > 0 for all t ,  which would mean that y cannot 
change sign. We conclude that the differential equation ( 4) has nontrivial periodic 
solutions only if a = 0 and b > 0. 

The same approach can be extended to the study of similar nonlinear differential 
equations such as the unforced Duffing 's equation, 

y" + ay' + by + el = 0,  

which is usually considered in more advanced differential equations courses .  (See, for 
example, Hale [2, p. 1 68] . )  

Example 3 (Linear Systems with Constant Coefficients) :  We conclude by using 
Proposition 1 to show that if abed < 0, then the linear system of differential equations 

x' = ax + by 

y' = ex + dy 

(6) 

has no nontrivial periodic solutions . Conditions that determine the qualitative nature of 
solutions of (6) are usually given in differential equations courses in terms of the trace 
(a + d) and the determinant (ad - be) of the coefficient matrix of (6) [1 ,  p. 3 12] . These 
are obtained by analyzing the characteristic equation of the system. As a contrast, we 
argue as we did for the harmonic oscillator. 

If we assume that abed < 0 and that (x , y) is a periodic solution of ( 6) of period T ,  
then we can write 

to obtain 

exx' = aex2 + bexy 

-byy' = -bexy - bdy2 

exx' - byy' = aex2 - bdy2 . 

Integration of both sides of the above equation from 0 to t gives 

e (x (t ) )2 - e (x (0) )2 - b (y (t) )2 + b (y (0) )2 = g (t) - g (O) + mt ,  (7) 

where g is periodic of period T and m is the average value of 2aex2 - 2bdy2 • Since 
all terms in equation (7) must be periodic of period T, we conclude that m = 0. Also, 
since (ae) ( -bd) > 0, then ae and -bd must have the same sign, which means that x 
and y must both be identically 0 on [0 , T] ,  and hence on all of R 
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A Special Case of Dirichlet's Theorem on 
Primes in an Arithmetic Progression 

H I L L E L  G A U C H M A N  
Eastern i l l i no i s  U n iversity 

Char leston I L  61920 

Dirichlet' s  theorem asserts that every arithmetic progression m ,  m + n ,  m + 2n , . . .  , 
with m and n relatively prime, contains infinitely many primes. The simplest proofs 
are analytic, using properties of Dirichlet L-series [1] ,  although Atle Selberg gave a 
complicated elementary proof in 1 949 [5] . Certain individual cases , such as 3 ,  3 + 4,  
3 + 8 ,  . . .  and 5 ,  5 + 6 ,  5 + 1 2 ,  . . .  , are easy to prove. Other special cases , notably 
1 ,  1 + 4, 1 + 8 ,  . . .  , can be proved using simple properties of quadratic residues [1] . 
In this note, we use elementary arguments to cover an infinite number of cases. While 
these have been given other elementary proofs (see, for instance, Dickson [2, vol. 1 ,  
p .  4 1 8] or Ribenboim [ 4 ,  p .  268]) ,  the proof presented here i s  the simplest and shortest 
that the author knows. 

In his recent paper in this MAGAZINE [3] , Lionel Levine proved the following in
teresting theorem: 

THEOREM A. Let f be any function from a set S to itself such that f" (the nth 
iterate off) has finitely many fixed points for every n. If T (n) is the number of points 
fixed under f", then 

n I L IL  (�) T (d) 
d in 

d 

for all positive integers n. (Here, JL is the Mobius function: JL(p) = - 1  when p is 
prime, JL (pm ) = Ofor m :=:: 2, and JL(ab) = JL(a)JL(b) when a and b are coprime). 

Levine used Theorem A to prove a generalized form of Fermat's Little Theorem: 
For all positive integers n and k, 

He did so by taking S to be the set of complex numbers and f (z) = zk . In this note we 
show that for a different choice of S and f : S ----+ S, Theorem A gives a simple and 
elementary proof of a special case of Dirichlet' s  theorem on primes in an arithmetic 
progression. Namely, we prove that every arithmetic progression with first term 1 con
tains infinitely many primes . 

We begin with a lemma that may be of interest in itself. 

LEMMA. Let a and n be integers greater than 1, let n = p�1 • • •  p�k be a represen
tation of n as a product of primes, and let q be a common divisor of 

an - 1  an - 1  
an/Pi - 1 ' · · · ' a"IPk - 1 · 

Then n divides (an - l ) (q - 1 ) /q .  
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Proof For integers Xt , . . .  Xn satisfying 0 ::::: x ;  ::::: a - 1 for i = 1 ,  . . .  , n ,  the ex
pression (x 1 . . .  Xn )a := x1 a"- 1 + · · · + Xn- la + X11 is called an n -digit number written 
in the base a .  Let us define S to be the set of all n-digit numbers x = (x i . . .  Xn )a writ
ten in the base a that are not divisible by q .  For any n-digit number x = (x 1 • • •  Xn )a 
written in base a we define f(x) = (x2 . . .  X11X t )a .  Then f (x)  = ax - Xt (an - 1 ) .  
Since q I a "  - 1 ,  f i s  a map from S into itself. 

Assume that for some n-digit number x written in the base a, we have fniPi (x ) = x 
for 1 ::::: i ::::: k. Then x has the form 

X = (xl . . .  X .!!.. XJ . . .  X .!!.. . . .  XJ . . .  X .!!..) 
Pi Pi Pi '-.,.-' '-.,.-'  '-.,.-' a ( ) ( .!!.. (p · - J ) .!!.. ) ( ) a" - 1 

= x1 • • •  X .!!,- 1 + a Pi + · · · + a ' Pi = x1 • • •  X.!!.. . ___,1!..,-----P, a p, a a Pi _ 1 

Hence x is divisible by q ,  so x tJ. S. If d is a divisor of n such that d < n and if 
fd (x) = x ,  then for some i with 1 ::::: i ::::: k, we have j"IP; (x) = x ,  and once more we 
get that x tf. S. Thus, using the notation from Theorem A, we find that T (d) = 0 for 
all divisors d of n such that d < n ,  and Theorem A implies that n I T (n) . It is easy to 
see that 

T (n) = l S I  = an - 1 -
a" - 1 

= (an - 1 ) (q - 1 )
. 

q q 

Hence n divides (an - 1 ) (q - l ) jq ,  and the proof is complete. 

We can now prove our main result. 

• 

THEOREM 1 .  Let n be a positive integer. There are infinitely many primes of the 
form 1 + ny, where y is a positive integer. 

Proof For n = 1 the theorem is obvious .  Let n > 1 .  Assume that the theorem is 
false and let q1 , • • •  , qs be all primes of the form 1 + ny . Let n = p�1 • • •  p;k be the 
representation of n as a product of primes. Consider the polynomials 

xn - 1 x" - 1 
II ( 1 ) 

x PI  - 1 

Since all polynomials ( 1 ) have a mutual root x = e2rr: i fn , there exists a polynomial 
g (x) of positive degree, with integer coefficients and positive leading coefficient, such 
that g (x )  divides each polynomial ( 1 ) .  For x = 0, the value of each polynomial in ( 1 ) 
is 1 ,  so g (O) = ± 1 ,  and it follows that gcd(g (x ) ,  x )  = 1 for each integer x .  Since 
the leading coefficient of g (x) is positive, there exists a positive integer t such that 
g (x) > 1 for each x > t .  Set a =  ntq1 • • •  qs . Since a > t, g (a) > 1 .  Let q be a prime 
divisor of g (a ) .  The numbers a ,  n ,  and q satisfy the conditions of the Lemma, so 
n I (a" - 1 ) (q - 1 ) .  Since n I a ,  we have gcd(an - 1 ,  n) = 1 .  Therefore n I q - 1 ;  
that is, q = 1 + ny . Since q 1 g (a) and gcd(g (a) , a) = 1 ,  we have gcd(q , a) =  1 ,  and 
it follows that gcd(q , q 1 • • •  qs ) = 1 .  Thus q is not one of the numbers q1 , • • •  , q. , which 
contradicts the assumption that q 1 , • . .  , qs are the only primes of the form 1 + ny . This 
completes the proof. • 

Acknowledgment. The author wants to thank the referee for valuable suggestions. 
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Proof Without Words: Simpson's Paradox 
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Popularity of a candidate is greater among women than men in each town, yet pop
ularity of the candidate in the whole district is greater among men. 

Procedure A has greater succes than procedure B in each hospital, yet, in general, 
procedure B has greater success than A .  

and 
b2 B2 
- < -

bl B1 ' 

For more about Simpson's  paradox, see 

yet 

1. Thomas R. Knapp, Instances of Simpson's paradox, College Math. J. , 16:3,  209-2 1 1 .  

2 .  A. Tan, A geometric interpretation o f  Simpson's paradox, College Math. J. , 17:4, 340-34 1 .  
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A Nowhere Differentiable Continuous 
Function Constructed Using Cantor Series 

L I U  W E N  
Hebei U n ivers ity of Techno logy 

Tianj i n  3001 30, Ch ina  

The examples of continuous nowhere differentiable functions given in most analysis 
texts involve the uniform convergence of a series of functions (see Hobson [1, pp. 40 1-
4 12] ) .  In the last twenty years interest in this subject has been renewed ( [2]-[7] ) .  In 
this note we construct a new elementary example by using the Cantor series , which is 
very accessible and needs only the basic notion of limit. Let qn � 2 be a sequence of 
positive integers . A Cantor series, or Cantor expansion, for a real number x E [0 , 1] is 
analogous to a decimal expansion, where numbers other than powers of ten can serve 
as denominators : 

oo 
X 

x = Z: n 
• 

n= l ql . . • qn 
( 1 )  

Here the nth digit Xn can take on the values 0 ,  1 ,  . . .  , qn - 1 .  It i s  known that every 
x E [0 , 1 ]  has a Cantor expansion, although the expansion may not be unique. Our 
function is defined by 

oo 
Un 

u = f(x) = L , 
n= l n (n + 1 )  

where the numbers un are defined a s  follows : u 1 = 1 ,  and when n � 1 ,  

if Xn+ l = 0 but x, f=. 0, 

Or if Xn+ l = qn+ l - 1 but Xn f=. q, - 1 ; 
otherwise . 

(2) 

(3) 

The condition in the first line identifies situations where either adding or subtracting 
in the next digit past the nth would affect the nth digit. We must check to see that 
f is well defined by these formulas in the case when there are two distinct Cantor 
expansions for x .  Suppose that x E (0, 1 ]  has two Cantor expansions ; they must have 
the following form (Thinking of a number like 0.47999 . . .  might be helpful. ) :  

and 

Since uk depends only on the first k digits of the Cantor series of x ,  the correspond
ing values of f (x ) are 

_ � Uk _ Un � 1 _ � Uk 
U - � � - � ' 

k= l k(k + 1 )  n k=n+l 
k(k + 1 )  k= l k(k + 1 )  

and 
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, _ � uk u;, _ u� � 1 _ � uk u - �  + � - �  ' 
k= l k (k + 1 ) n (n + 1 ) n k=n+ l  k (k + 1 ) k= l k (k + 1 ) 

4 0 1  

so  the two values are equal. (Note that the series L_:t k(k�l) is a telescoping series 
that sums to 1 / (n + 1 ) . ) Hence f (x) is well defined. For convenience, we agree that 
if x has two Cantor expansions, only the one with infinitely many Os is used. 

We first prove that f(x) , as defined by (2) and (3) is right-continuous. Given 8 > 0, 
there exists a positive integer n such that 2/ (n + 1) < 8 . 

We define a number just slightly larger than x: 

Then for any x' E (x, x*) we have 

1 f-- Uk � U� f(x ) = f={ k(k + 1 ) + 
k� l k(k + 1 ) , and 

00 I u� - uk I 00 2 2 
I J <x') - J <x) l :::: I: k(k + o < I: k(k o = -1 < 8 . 

k=n+l k=n+ l + n + 
Hence f is right -continuous at x. Now we prove that f does not have a finite right

derivative at any x E [0, 1 ) , provided qn :::: 3 (n :::: 1 ) and 

1. ql . . . q/1 tm = oo .  n---+oo n !  
(4) 

By our agreement about duplicate Cantor expansions, there exists a positive inte
ger n, which may be arbitrarily large, such that Xn < qn - 1 . Let 

� Xk X11 + 1 a" = � + ---
k= l q l . . . qk q l . . .  q, 

Then x < an < b, . Noting that L_:n+ l (qk - 1 ) / (q t . . . qk )  = 1 / (q t . . . q,) , we de
rive several useful inequalities : 

1 
bn - an < --- (5) 
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Hence 

bn - an > (bn - x)/4 > (a11 - x)/4 . 

From the definition of f,  we compute the following values : 

f(an ) = t Uk 
- Un f 1 = t Uk -

u, 

k= l k (k + 1 )  n k=n+l k (k + 1 )  k= l k (k + 1 )  n (n + 1 )  

n oo - n -
J (bn )  = L Uk 

+ L Un = L Uk 
+ U11 

k= l k (k + 1 )  k=n+ l k (k + 1 )  k= l k(k + 1 )  (n + 1 )  

Now llin l � 1 / (n - 1 ) ! ,  s o  computation shows 

llin l  1 
l f (bn) - f (an ) l = - � 1 · n n .  

Combining (4) , (5), and (7), we have 

I J (bn ) - f (an ) l q l · · · qn ....::...._--,----=--- > -+ oo as n -+ oo .  
bn - an n !  

Using the triangle inequality and (6), we find 

l f (bn ) - f (an) l < l f (bn ) - f (x) l 
+ 

l f (an ) - f (x) l 
bn - an - bn - an bn - all 

4 1 f (b, ) - f (x) l 4 1 f (an) - f (x) l < 
+ . - bn - x a11 - x 

(6) 

(7) 

(8) 

(9) 

Since (8) shows that the left-hand side grows without bound as n -+ oo, (9) says 
that f does not have a finite right-derivative at x . To obtain the analogous result on the 
left, we agree that if x has two Cantor expansions , only the one with xk = qk - 1 for 
all k � n is used. Arguments similar to those given can then be used to show that f is 
left-continuous and does not have a finite left-derivative at any x E (0, 1 ] .  Thus f is 
continuous and nowhere differentiable. 
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Proposa l s  
To be considered for publication, solutions should be received by May 1, 2002. 

1633. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, NY. 

A palindromic composition of a positive integer n is a palindromic finite sequence 
of positive integers whose sum is n. As examples, 1 ,  2, 2, 1 and 2, 1 ,  1 ,  2 are different 
palindromic compositions of 6, and 10 ,  3 ,  10  is a palindromic composition of 23 .  Find 
the number of palindromic compositions of the positive integer n .  

1634. Proposed by Constantin P. Niculescu, University of Craiova, Craiova, Roma
nia. 

Find the smallest constant k > 0 such that 

ab be ca 
---- + + < k(a + b + c) 
a + b + 2c b + c + 2a c + a + 2b -

for every a ,  b ,  c > 0. 

1635. Proposed by Larry Hoehn, Austin Peay State University, Clarksville, TN. 

Prove or disprove: If two cevians of a triangle are congruent and divide their respec
tive sides in the same proportion, then the triangle is isosceles . 

1636. Proposed by Leroy Quet, Denver, CO. 

For any positive integer m,  define R(m) = 11�� 1 k2k- l-m . 

(a) Prove that R(m) is an integer that is divisible by every prime less than or equal to 
m if and only if either m + 1 is prime or 1111 1 > p, where p is the largest prime p 
dividing m + 1 and pk is the largest power of p that divides m + 1 .  

We invite readers to submit problems believed to be new and appealing to students and teachers of advanced 

undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any bibliographical 

information that will assist the editors and referees . A problem submitted as a Quickie should have an unexpected, 

succinct solution. 

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a 

separate sheet. 

Solutions and new proposals should be mailed to Elgin Johnston, Problems Editor, Department of 

Mathematics, Iowa State University, Ames IA 500 1 1 ,  or mailed electronically (ideally as a MI'J3X file) to 

ehj ohnst!lliastate . edu. All communications should include the readers name, full address, and an e-mail 

address and/or FAX number. 
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(b) Prove that if R (m) i s  not divisible b y  every prime less than or equal to m , then 
there is exactly one prime less than or equal to m that does not divide R (m) .  

1637. Proposed by Erwin Just (Emeritus), Bronx Community College, Bronx, NY. 
Prove that the circle with equation x2 + y2 = 1 contains an infinite number of points 

with rational coordinates such that the distance between each pair of the points is 
irrational. 

Qu ick ies 
Answers to the Quickies are on page 409. 
Q915. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, NY. 

Let Sn , n ::: 2, denote the set of all permutations of { 1 ,  2, . . .  , n } .  Obviously 
1 :S max1�i�n I a; - i I :S n - 1 for each permutation a = (a I , az , . . .  , an) in Sn . 

(a) For how many permutations a in Sn do we have max1�i�n I a; - i I = n - 1 ?  
(b) For how many permutations a in S11 do we have max1�;�11 I a; - i I = 1 ?  

Q916. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, 
Canada. 

Do there exist any integers k such that there are an infinite number of relatively 
prime positive integer triples (x , y ,  z) satisfying the Diophantine equation 

x2l = k2 (x + y + z) (y + z - x) (z + x - y) (x + y - z)?  

So l ut i ons  

Onederful, Onederful! December 2000 

1608. Proposed by William D. Weakley, Indiana-Purdue University at Fort Wayne, 
Fort Wayne, IN. 

Let b be a positive integer, b > 1 .  We call a positive integer onederful in the base b if 
it divides some integer whose base b representation is all ones . Which positive integers 
are onederful in the base b? 
Solution by William P. Wardlaw, U.S. Naval Academy, Annapolis, MD. 

A positive integer n is onederful in the base b if and only if n is relatively prime 
to b. First observe that if n divides ( 1 1 1  . . .  1 1 ) b = L�=o bk for some r ,  then clearly n 
is relatively prime to b. Conversely, if n is relatively prime to b, then m = (b - 1 )n is 
also relatively prime to b .  Hence, by the Euler-Fermat theorem, m divides b<i>(m) - 1 .  
It follows that n divides 

b<i>(m) - 1  ----,--- = b</>(m)- l  + · · · + b2 + b + 1 = ( 1 1 . . .  1 1 1 )b . 
b - 1  

Also solved by Roy Barbara (Lebanon), Jany C. Binz (Switzerland), Michel Bataille (France), Jean Bogaert 

(Belgium), Molly Brazill and Michele Renehan, Marc A. Brodie, Con Amore Problem Group (Denmark), Jim 

Delany, Daniele Donini (Italy), Robert L. Doucette, Marty Getz and Dixon Jones, Jerrold W. Grossman, Elmer 

K. Hayashi, Tom Jager, Kelly Jahns, Victor Y. Kutsenok, Stephen Maguire, Reiner Martin, Tyrel McQueen, Jose 

H. Nieto (Venezuela), Bill Stone, John S. Sumner and Kevin L. Dove, Ajaj A. Tarabay and Bassem B. Ghalayini 

(Lebanon), Michael Woltermann, and the proposer. There was one incorrect submission. 
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A Triangle Inequality December 2000 

1609. Proposed by Yanir A. Rubenstein, student, Technion-Israel Institute of Technol
ogy, Haifa, Israel. 

Evaluate 

. f 
( I a  I + l b l ) ( la l + l b l  + Ia + b l )  

a��c l im (ab) l . 
lm(ab);fO 

Solution by John S. Sumner and Kevin L. Dove, University of Tampa, Tampa, FL. 
Let F denote the expression whose infimum we wish to find, and write a =  Ia  I ei"' , 

b = l b l ei.B , where a - f3 =!= rrk (k an integer) . Then l lm(ab) l = la l l b l l sin(a - {3) 1 is 
twice the area of the triangle T with sides I a  I ,  l b  I ,  and I a  + b 1 .  We then have 

F = 
p (p - l e i )

' 2 Area(T) 

where p is the perimeter of triangle T .  Because the value of F is  unchanged when a 
and b are multiplied by the same constant, we may assume that p is fixed. For fixed 
p and given l e i < p, the area of triangle T is maximized when l a l  = l b l .  Setting 
Ia I = l b l  and using Heron's  formula for the area of a triangle, we have 

2 
( 1 - Lpc l ) p (p - l e i ) 2p (p - l e i ) F = 

2Js (s - l a l ) (s - l a l ) (s - l e i )
= Jpc2 (p - 2 1 c l ) 

= ---;:::(=7=1 )=2=(1=_===2=7=1 ) 
where s = p /2 is the semi perimeter of the triangle. Because T is a nondegenerate 
triangle, 0 < l e i / p < 1 /2. 1t is easy to verify that F is minimized for � = 

3-2../5 and 

that the corresponding value of F is J22 + 10,JS. 
Also solved by Roy Barbara (Lebanon), Michel Bataille (France), Jean Bogaert (Belgium), Con Amore Prob

lem Group (Denmark), Daniele Donini (Italy), Robert L. Doucette, Tom Jager, Ajaj A. Tarabay and Bassem B. 

Ghalayini (Lebanon), Michael Woltermann, Li Zhou, and the proposer. There were two incorrect submissions. 

Balanced Segments on a Necklace December 2000 

1610. Proposed by Hassan A. Shah Ali, Tehran, Iran. 

Place n black pieces and n white pieces on distinct points on the circumference of 
a circle. 

(a) Prove that for each natural number k ::::; n, there exists a chain of 2k consecutive 
piece,s on the circle of which exactly k are black. 

(b) Prove that there are at least two such chains that are disjoint if 

k ::::; J2n + 2 - 2 .  

Solution by Roy Barbara, Lebanese University, Fanar, Lebanon. 
For convenience a chain of 2k consecutive pieces on the circle is called a 2k-chain. 

A 2k-chain is called balanced if it consists of k black pieces and k white pieces. If C 
is a 2k-chain, define 

f (C) = ! (number of black pieces in C - number of white pieces in C) . 
Note that if C is shifted either direction by one piece, then f (C) changes by - 1 or 0 
or 1 . Thus if Ca and Cb are 2k-chains with f(Ca)  ::=: 0 and f(Cb) :S 0, then there is 
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a (balanced) 2k-chain C with f (C) = 0 .  In particular, such a chain is encountered by 
shifting Ca one piece at a time until it coincides with Cb . 
(a) Let C1 , C2 , • • •  , C211 be all of the distinct 2k-chains on the circle. Then 

2n 
L f (C; ) = k (number of black piece - number of white pieces) = 0.  
k= 1  

Thus there exist 2k-chains Ca and Cb with f(Ca ) :=:: 0 and f (Cb) ::: 0. As  shown 
above, it follows that there is a balanced 2k-chain. 

(b) Let n = kq + r, with q :=:: 2 and 0 ::: r < k. We show that there exist two disjoint 
balanced 2k-chains if either 

(i) k < 2q - 1 or (ii) r < q - 1 .  

We show later that condition (i) is satisfied if k ::: J2n + 2 - 2. Condition (ii) 
allows large values of k, including all proper divisors of n .  

Let C be  a balanced 2k-chain, and denote by  A the complementary (2n - 2k) 
chain. Because 2n - 2k = (q - l )2k + 2r , we can divide A into q disjoint pieces 
C0 , C1 , • • .  , Cq_ 1 ,  where C1 , C2 , • . .  , Cq- 1  are 2k-chains and C0 is a 2r -chain. 
Extending the definition of f in a natural way to 2r-chains, we have 

q- 1 
L f(C; ) = O. 
i=O 

Assume that there are no balanced 2k-chains in A .  We may then assume, without 
loss of generality, that f(C') :=:: 1 for any 2k-chain C' contained in A .  (If A con
tains 2k-chains Ca and Cb with j (Ca ) :=:: 1 and f (Cb) ::: 0, then we can argue as 
in part (a) to find a balanced 2k-chain in A. )  

Case 1 :  r < q - 1 .  Because f (Co) :=:: -r,  we have f (Co) + j(C1 ) + · · · + f (Cq- 1 )  :=:: 
-r + (q - 1 )  > 0. This contradicts (*) .  Hence, if r < q - 1 ,  then there is a 
balanced 2k-chain in A .  This chain is disjoint from C.  

Case 2: k < 2q - 1 .  By (*) , 

q- 1 
f (Co) = - L f(C; ) :S - (q - 1 ) .  

i= 1 
This means that C0 contains at least 2(q - 1 )  white pieces, and hence at least 
k white pieces .  Let Do be the 2k-chain formed by appending to C0 the next 
adjacent chain of 2k - 2r pieces from the adjacent chain C1 • Because Do 
contains at least k white pieces, f (D0) ::: 0. This contradicts the assumption 
that j(C') :=:: 1 for all 2k-chains C' in A. Thus, if k ::: 2q - 2, then there is a 
balanced 2k-chain disjoint from C. 

Finally, note that (i) is true i f  k ::: J2n + 2 - 2. Indeed if this is the case, then 
k < J2n + 6 - 2. This in turn implies that k2 + 4k - 2(n + 1 )  < 0, from which 

2n + 2 - 4k 2n - 2k - 2r 
k < < = 2q - 2 < 2q - l . - k - k 

Also solved by Con Amore Problem Group (Denmark), Robert L. Doucette, Georgi D. Gospodinov and Jeff 

Lutgen, Jenvld W GIVssman, Victor Y. Kutsenok, Reiner Martin, Jose H. Nieto (Venezuela), Edward Schmeichel, 

Harry Sedinger, David Smyth, John S. Sumner and Kevin L. Dove, Ajaj A. Tarabay and Bassem B. Ghalayini 

(Lebanon), Li Zhou, and the propose1: There was one incorrect submission. 
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A Centroid Condition December 2000 

1611. Proposed by Ho-joo Lee, student, Kwangwoon University, Seoul, South Korea. 

Let P be in the interior of !::,ABC,  and let lines A P ,  B P ,  CP intersect the sides 
BC,  CA, AB in L, M, N, respectively. Prove that P is the centroid of !::,ABC if 

[A PN] = [BPL]  = [CPM] ,  

where [ · ] denotes area. 

Solution by Ajaj A. Tarabay and Bassam B. Ghalayini, Notre Dame University, Zouk 
Mikael, Lebanon. 

A 

Referring to the figure, let x = [AP N] ,  a = [M P A] ,  b = [N P B] ,  and c = [L PC] . 
Then 

x3 = (�PA · PN sin a) (}P B  · PL sin y) (�P C · PM sin f3) 
= (�PM · P A sin y) ( � P N · P B sin f3) ( � P L · PC  sin a) 
= abc. 

Without loss of generality, we may assume that a � b � c, so a � x � c. Now 

BL [BPL]  [ABL] 
-

L C  [L P C] [ACL] ' 

and it follows that 

X 2x + b  2x + b  - x  x + b 
= = = 

c a + x + c a + x + c - c x + a 

Because � > 1 and x ++
b 

< 1 , we have � = x+
+b 

= 1 .  Therefore x = c and a = b .  c - x a - c x a  
Because abc = x3 , it follows that a =  b = c = x . Hence BL = L C  and CM = MA, 
so P is the centroid of triangle A B C. 

Also solved by Herb Bailey, Roy Barbara (Lebanon), Michel Bataille (France), Jany C. Binz (Switzerland), 

Minh Can, Daniele Donini (Italy), Robert L. Doucette, Petar Drianov (Canada), Ovidiu Furdu{. Michael Golomb, 

Geoffrey A. Kandall, Victor Y. Kutsenok, Laurel and Hardy Problem Group, Heinz-Jurgen Seiffert (Germany), 

Raul A. Simon (Chile), Achilleas Sinefakopoulos (Greece), John S. Sumner and Kevin L. Dove, Michael Walter

mann, Li Zhou, and the proposer. 
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Not a Centroid Condition December 2000 

1612. Proposed by Ho-joo Lee, student, Kwangwoon University, Seoul, South Korea. 

Let P be in the interior of LABC,  and let lines A P ,  B P ,  C P  intersect the sides 
BC, CA, AB in L, M, N, respectively. Prove that P is the centroid of LABC if 

[A PN] + [B P L] + [CPM] = [A P M] + [B P N] + [C P L ] ,  

where [ · ] denotes area. 

Solution by Robert L. Doucette, McNeese State University, Lake Charles, LA. 
The given statement is not true. For a counterexample, choose LABC with 

AB = A C. Let P be any point other than the centroid on the median from A . Note 
that [A P N] = [A P M] ,  [BPL]  = [C PL] ,  and [C P M] = [B PN] . We then have 
[A PN] + [BPL]  + [C P M] = [A PM] + [B P N] + [C P L ] .  

One conclusion that i s  valid from the given hypotheses i s  that at least one of  the 
segments AL,  BM, CN is a median of L A B C. To prove this , let x = [APN] ,  y = 
[BPL] ,  z = [CPM] ,  a =  [A PM] ,  b = [B P N] ,  and c = [CPL] . Let s be the com
mon value of x + y + z and a + b + c. Because LAC N and L B C N share an altitude 
from C, 

AN x + z + a  
BN b + c + y  

Similarly, 

BL x + y + b s - (z - b) 
CL a + c + z  s + (z - b) 

By Ceva's  Theorem, 

and 

s - (y - a) 
s + (y - a) 

CM y + z + c  
AM a + b + x 

AN BL CM 
- · - · - = 1 . 

BN CL AM 

Letting d1 = x - c, d2 = y - a ,  and d3 = z - b, i t  follows that 

s - (x - c) 
s + (x - c) 

Expanding, and keeping in mind that d1 + d2 + d3 = 0, we find d1 d2d3 = 0. Thus at 
least one of the di ' s is 0. If d2 = 0, then it follows from ( *) that AN = B N so C N is 
a median. Similar conclusions follow if d1 = 0 or d3 = 0. 

Note. The converse of this result holds . Indeed, if AL is a median and P is a point on 
AL, then use an affine transformation to map LABC to LA' B'C' with A' B' = A'C' . 
Because medians and ratios of areas are preserved, this reduces the situation to the 
counterexample described earlier. 

Also solved by Herb Bailey, Roy Barbara (Lebanon), Michel Bataille (France), Daniele Donini (Italy), Petar 

Drianov (Canada), Michael Golomb, Geoffrey A. Kandall, Victor Y. Kutsenok, Heinz-Jiirgen Seiffert (Germany), 

Achilleas Sinefakopoulos (Greece), John S. Sumner and Kevin L. Dove, Michael Wolte1mann, and Li Zhou. There 

was one solution with no name and four incorrect submissions. 
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Answers 
Solutions to the Quickies from page 404.  
A915. 

409 

(a) In this case we must have either a1 = n or an = 1 ,  or both. By the Inclu
sion/Exclusion Principle there are 2(n - 1 ) ! - (n - 2) ! = (2n - 3) (n - 2) ! such 
permutations. 

(b) Let a11 denote the number of permutations in S11 satisfying the maximality condi
tion. If maxi::::i::::n I a; - i l  = 1 ,  then either an = n or an = n - 1 .  The number of 
such permutations with a, = n is an - I · On the other hand, if a, = n - 1 ,  then 
an- I = n ,  and maxi:::: i::::n-2 I a; - i I = 0 or 1 ;  there are an-2 + 1 such permutations . 
Thus 

an = an - I + an-2 + 1 
with a 1 = 0 and a2 = 1 .  Adding 1 to both sides of ( *) we find that a11 = Fn+ 1 - 1 ,  
where Fk denotes the kth Fibonacci number. 

A916. In order for the right-hand side of the equation to be positive, x ,  y ,  z must be 
the lengths of the sides of a triangle. If A is the area of the triangle and a is the angle 
between the sides of lengths x and y, then 

4A2 
= 1 6k2A2 

sin2 a 
' 

so sin a = -fk .  By the Law of Cosines, 

z2 = x2 + l - 2xy cos a = x2 + l ± 
xy J 4k2 - 1 .  
k 

Because the left-hand side is an integer and the right-hand side is irrational, there are 
no solutions . 

50  Years Ago i n  the MAGAZ I N E  (Vo l .  25,  No. 2 ,  Nov.-Dec . ,  1 95 1 ) : 
Editor's Note 

The editors of the Mathematics Magazine like either to accept submitted articles 
or give good and sufficient reasons for not accepting them. 

However papers on classic problems that have been proved unsolvable, such 
as trisecting all angles and squaring the circle, have become so numerous that 
it is not feasible for us to unravel them. Hence we have adopted the policy that 
authors will be required to show us some error in the classic proofs that such 
problems are unsolvable before we will weigh their attempts to solve them. 



R E V I E W S  

P A U L  j .  C A M P B E L L, Editor 
Belo i t  Co l l ege 

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for this 
section to call attention to interesting mathematical exposition that occurs outside the main
stream of mathematics literature. Readers are invited to suggest items for review to the editors. 

Pickover, Clifford A, The Zen of Magic Squares, Circles, and Stars, Princeton University Press, 
2002; XX + 399 pp, $29 .95. ISBN 0--69 1-07041-5 .  

"An ardent magic-square explorer is a 'mathematical samurai,' someone who trains to  be  nei
ther fearful of defeat nor hopeful of victory and thus enters combat with a neutral attentiveness, 
indifferent to-but prepared for-the difficult demands of each instant." If you have always 
wanted to think of yourself as a mathematical samurai, this may be for you. This fascinating 
book offers a mystical take on the phenomena of magic squares and similar objects ; it collects 
together much lore about magic squares, from the famous book by W.S .  Andrews and from 
other sources .  In particular, author Pickover successfully conveys the feeling of transcendence 
and wonder that magic squares bring him. But the mysticism, which will nevertheless hook 
some readers into the book's enjoyable mathematical adventures, still seems a little overempha
sized, or at best unnecessary. "Many researchers . . .  have noted the prevalence of integer patterns 
in geometry and mysticism. Perhaps there is something special about integers in the fabric of 
the universe." Perhaps indeed, but the remainder of that long paragraph on p. 37 1 makes no 
further mention of mysticism. That paragraph also repeats again, from Pickover's  The Loom 
of God: Mathematical Tapestries at the Edge of Time (Plenum, 1 997), what is surely the most 
mangled version ever ("The primary source of all mathematics are [sic] the integers") of Kro
necker's  famous quote about the integers ("Die ganze Zahl schuf der liebe Gott, alles Uebrige 
ist Menschenwerk") ;  but perhaps Pickover's omission of Kronecker's attribution of the integers 
to God is more suited to this book's theme. [The uncorrected advance proof of this book sent to 
reviewers did not have an index. ]  

Cipra, Barry, Number fun with Ben, Science 292 (4 May 2001) ,  http : I /www . ac ademi cpr e s s . 

com/ins c i ght /0430200 1 /grapha . htm . Pasles,  Paul C . ,  The lost squares of Dr. Franklin, 
American Mathematical Monthly 108 (6) (June-July 2001 ) ,  489-5 1 1 .  

As a youth, Benjamin Franklin "amused" himself with making magic squares, though he later 
had misgivings about not spending the time "more usefully" than on such "difficiles nugce [la
borious trifles] , incapable of any useful application." Franklin published just three squares, and 
Paul Pasles (Villanova University) has now republished three more from Franklin 's papers plus 
a previously unknown one-16 x 1 6-from Franklin's  letters. What was Franklin's method? 
Pasles tries to reconstruct it, since Franklin never described it: " [N]o one has desired me to 
show him my method of disposing the numbers. It seems they wish rather to investigate it 
themselves." 

MagPortal.com. Magazine articles on mathematics.  http : I /www . magportal . c om/ c / s c i /  

math/ . 

This Web site adds one or two listings ea�h week of magazine articles about mathematics, 
mostly from Science News, New Scientist, Scientific American, and Lingua Franca, with links 
to the full text. It's a handy location to find the text of an article that you remember but whose 
bibliographic details you don't .  

4 1 0 
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Ganter, Susan L. ,  Changing Calculus: A Report on Evaluation Efforts and National Impact 
from 1 988-1998, MAA, 200 1 ;  xi + 78 pp, $24.95 (P) (discount available to MAA members) .  
ISBN 0--88385-534-8 . 

After 1 1  years, 3 million students, and $27 million of NSF money, what has the effort to reform 
calculus accomplished? The goal was "to help students have a better understanding of and ap
preciation for mathematics." The 1 8  objectives, however, were not about outcomes but were just 
to adopt some features from a specified list of instructional techniques (laboratory experience, 
discovery learning, cooperative learning) , content (applications, real-world modeling, approx
imation, differential equations) , and technology (computer use, graphing calculators) . Hence 
it is perhaps not surprising that only 43 published articles resulted from the 1 27 projects and 
only 34 projects reported results on student achievement. In 88% of the studies with such re
sults, there was positive impact on at least one measure of achievement; in 1 5 %  there was some 
negative impact, commonly on computational skills. This report suggests a pattern of positive 
impact particularly in projects that used technology and group work. Also, some students re
spond with a positive attitude to reform courses but others do not, and "perhaps calculus reform 
generates more interest in mathematics [in terms of taking further courses] ." However, the au
thor cautions : " [A]ll results . . .  reported are suspect, since no overall evaluation design was used 
to collect even the stronger data in a manner that is consistent across [the 1 27] projects." One 
wishes that the projects had started with agreement on appropriate course goals and means for 
evaluating success; then we might by now have results more definitive and satisfying than the 
vague mild successes summarized here. 

Kenschaft, Patricia, Math Medley. One-hour radio show. Saturdays, KFNX 1 100 Phoenix 
1 1  A . M . ,  WALE 990 Providence 9 A . M . ;  possibly one hour later in summer. Schedule of future 
and past shows at http : //www . csam . mont c lair . edu; -kens chaft /WALEs ched . html ; in
dexes by topic and person, with links for listening to past programs, at http : I /www . we bet . com/ 

math/vi ewpage ?name=math_medl ey . 

Chemists have long had a nationally syndicated public radio show, Men and Molecules,  and 
National Public Radio has its Science Friday talk show. Unknown to most of us, mathematics 
too has had its own radio show for several years . Math Medley is a one-hour call-in radio talk 
show with 10 ,000 listeners, primarily in Arizona and Rhode Island. Pat Kenschaft (Montclair 
State University) interviews a different person every Saturday about "education, parenting, eq
uity, and environmental issues, with an underlying theme of mathematics ." The past four years 
of shows have included many mathematicians prominent in the MAA (Pres. Ann Watkins was 
on in late September about The Joy of Statistics) as well as authorities on elementary and sec
ondary mathematics education and practitioners in various areas involving mathematics (e.g . ,  
the mathematics of pesticides, the mathematics of world energy usage) . Scheduled for soon 
after you receive this issue (Dec. 29) is Paul Sally (University of Chicago) on a topic to be 
announced. I hope you will tune in, either live or asynchronously over the Web ;  it' s time for a 
national audience for this show. 

Stewart, Ian, What could go wrong? New Scientist ( 1 5  September 2001 ) ,  35-39.  

Murphy's Law:  "Anything that can go wrong, will go wrong." Author Ian Stewart ponders 
Godel 's undecidability results and wonders why mathematics seems to have escaped Murphy's 
law unscathed. Any one of the four-color theorem ( 1 976), Fermat's Last Theorem ( 1 994) , and 
the Kepler conjecture (2000) could have turned out to be undecidable propositions but they 
didn't .  "Where are all the undecidable problems? Why are there only a few, lurking in the 
meta-mathematical fringes?" Then again, there is the enormous question of whether P = NP. 
If it is provably undecidable, there would have to be a model of mathematics in which P = NP 
is true, and in that model all kinds of problems would have "quick and easy answers . This would 
be a mathematician's paradise, and surely Murphy could not allow such a thing to exist." If P = 

NP is undecidable but we cannot prove it, "the question of whether it is undecidable is also 
undecidable . . . .  First change the axioms so that P = NP is provably undecidable, then change 
them again so it's true. But if Murphy's master plan is an infinite regression of undecidability 
. . . .  If it can go meta-wrong, then it will go meta-wrong. Murphy metamurphosed." 
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Sinefakopoulos, Achilleas, P1614(66) 
Skau, Ivar, S 1 604(326) 
Sumner, John S., and Dove, Kevin L. ,  
S 1 609(405) 

Stromquist, Walter, S 1 595( 1 57) 
Tarabay, Ajaj A. ,  and Ghalayini, Bassam B . ,  

S 1 6 1 1 (407) 
Wardlaw, William, S 1 608(404) 
Wee, Hoe-Teck, P 1 63 1 (325) 
Woltermann, Michael, S 1 600(242) 
Yun, Zhang P 1 6 17(67) 
Zhou, Li, S 1 592(70) , S 1 597( 158)  

Thanks are also due to those who have refereed proposals for the Problems Column: 

Clifford Bergman, Alexander Burstein, Irvin Hentzel, Roger Maddux, and James Wilson of 
Iowa State University, Ames, and Vania Mascioni of Western Washington University, Belling
ham. 

Letters to the Editor appear on pages 368 and 377. 
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APeD ADVANCED 
PLACEMENT P R O G R A M" 

Col lege faculty wanted to evaluate AP Calcu lus Exams 
at the Annual Col lege Board AP Reading 

During one week i n  June each year, college faculty and high school teachers from all over 

the world gather to evaluate and score the free-response section of AP Exams. These 

hard-working professionals are known as faculty consultants. College level faculty 

consultants are vital to the AP Program because they ensure that students receive AP 
grades that accurately reflect college-level achievement in each discipline. Faculty 

Consultants are paid honoraria, provided with housing and meals, and reimbursed for 

travel expenses. At the AP Reading you will also exchange ideas, share research 

experiences, discuss teaching strategies, establish friendships, and create a countrywide 

network of faculty in your discipline that can serve as a resource throughout the year. 

The application to become an AP Reading faculty consultant can be found on the College 

Board ' s  Web site at www.collegeboard.org/ap/readers or you may contact Performance 

Scoring Services at ETS at (609) 406-5443 or via e-mail at apreader@ ets.org to request 

an application. Applications are accepted throughout the year but you are encouraged 

to apply now to be considered for appointment to the upcoming AP Reading for 

AP Calculus Exams to be held June 9- 15 ,  2002 at Colorado State University. 
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COM I N G  I N  D ECEMBER . . .  
Conjecture and Proof/Mi k l6s Laczkov ich  
i s  a com p i l at ion of  the l ectu re notes for a 
cou rse des igned and i n i t iated by Pau l  E rdos, 
Lassz l6  Lovasz, Vera S6s, and Lasz l o  Babai  
for a o ne-semester cou rse g iven by the 
B udapest Sem i na rs in Mathemati cs .  

By i ntrod u c i n g  a variety of advanced top i cs, 
the book fu nctions, in part, as a su rvey of 
top i cs from n u m ber theory, geometry, meas
u re theory, and set theory. I t  can be used as 
a supp lement in cou rses that i ntrod uces 
abstract mathematics to u ndergraduates . 
The i deas that are presented are deeper 
and more soph ist icated than those typ ica l 
l y  encou ntered in  sophomore- level "trans i 
t ion " cou rses . However, ta lented students in  such cou rses 
shou ld  fi nd th i s  book to be an exc i t i ng  excu rs ion i nto new areas of mathe
mati cs-and more i mportant ly, new ways of th i n k i ng about mathemat ica l  
prob lems.  Because of  i ts u n usua l  depth and the fact that some of  the sec
t ions can stand a l one or be comb i ned with a few others to form a u n i t, th i s  
book i s  idea l ly s u i ted for u pper- l evel u ndergrad uate sem i nars or capstone 
cou rses . 

A l though the text d i scusses quest ions from var ious fie lds  i nc l u d i ng n u m ber 
theory, a l gebra and geometry, i t  i s  centered arou nd the rea l n u m ber system 
and the prob lem of measure .  Th us, the n u m ber theoret ic sect ions are 
concerned with rat iona l  and i rrat iona l  and with a l gebra i c  and transcendenta l 
n u mbers; the prob lems of geometr ic construct ions c lar i fy the natu re of 
construct ib le  n u m bers (as a su bset of a l gebra i c  n u m bers), and the quest ions 
of geometr ic  d i ssect ions serve as mot ivat ion for genera l prob lems of 
equ idecomposab i  I ity. 
Catalog Code: CAP/MM • 1 40 pp., Paperbound, 2001 • ISBN 0-88385-722-7 
List $24.95 • MAA Member $1 9.95 



SOLVE THIS! -----. 

Math Activities for Students & Clubs 
by James Ta nton 

Sop h i st i cated mathemat ics i s  access i b l e  to a l l .  
Th i s  book proves i t !  Solve This i s  a col l ect ion 
of i ntr igu i ng mathemat ica l  prob lems and 
act iv i t ies l i n ked by common themes that 
i nvo l ve work i ng with objects from our 
everyday exper i ence. Learn about the 
mathemat ica l  myster ies of a bage l ,  a 
checkerboard, and a p i l e  of l a u n d ry, for 
exa m p l e .  D i scover for you rse l f  that whee l s  
need not b e  rou nd, that bra i ds need not 
have free ends, that it i s  a lways best to tu rn 
arou nd twi ce-an d  more !  Mathematics is 
a l l  arou nd us .  We a l l  do mathematics 
everyday. Th i s  book i rres i st i b l y  tem pts the reader to embark 
on a jou rney of i nvest igation and d i scovery. A l l the act iv i t ies a re i m med i ate, 
catchy, and fu n,  but upon i nvest igat ion begi n to u nfo l d  i nto surpr i s i ng l ayers 
of depth and new perspectives. The necessary mathematics in i ncreas i ng lev
e l s  of sop h i st i cat ion i s  fu l ly exp l a i ned a long the way, but readers may amend 
the jou rney in any way to match thei r  mathemat ica l  ab i l i t ies .  E l ementa ry, 
m i d d l e  and h igh schoo l students, co l lege students and mathematics majors, 
facu l ty from a l l departments and profess iona l  mathemat ic i ans, as we l l  as se lf
descr i bed math phobics have a l l  enjoyed these act iv i t ies and have a l l  
atta i ned a sense of sati sfact ion and accomp l i sh ment from them . Mathemat ics 
edu cators wi l l  fi nd th i s  an i nva l uab le  resou rce of fresh and i n novative 
approaches to top i cs in mathematics.  This book is for everyone!. No prepara
tory learn i n g  is needed to d ive r ight i n !  You wi l l  enjoy do ing these act iv i t ies 
even more as part of a group event. Whether you are a student or an i nstruc
tor, anx ious  or comfortab le  with math, or  j u st cu r ious about mathematics, 
you wi l l  be cha l lenged and de l ighted by the act iv i t ies descri bed herei n .  

Catalog Code: HOM/MM • 232 pp., Paperbound, 2001 • ISBN 0-88385-71 7-0 
List $23.95 • MAA Member $29.95 
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The Geometry of Numbers 
C.D. Olds, Guiliana Davidoff, and Anneli Lax, editors 

Series: Anneli Lax New Mathematical Library 

The geometry of numbers originated with the publication of Minkowski's 
seminal work in 1896 and ultimately established itself as an important 
field in its own right. By resetting various problems into geometric con
texts, it sometimes allows difficult questions in arithmetic or other areas 
of mathematics to be answered more easily; inevitably, it lends a larger, 
richer perspective to the topic under investigation. Its principal focus is 
the study of lattice points, or points in n-dimensional space with integer 
coordinates-a subject with an abundance of interesting problems and 
important applications. Advances in the theory have proved highly signif
icant for modern science and technology, yielding new developments in 
crystallography, superstring theory, and the design of error-detecting and 
error-correcting codes by which information is stored, compressed for 
transmission, and received. 

This book presents a self-contained introduction to the geometry of numbers, beginning with easily 
understood questions about lattice-points on lines, circles, and inside simple polygons in the plane. Little 
mathematical expertise is required beyond an acquaintance with those objects and with some basic results 
in geometry. The reader moves gradually to theorems of Minkowski and others who succeeded him. On 
the way, he or she will see how this powerful approach gives improved approximations to irrational num
bers by rationals, simplifies arguments on ways of representing integers as sums of squares, and provides a 
natural tool for attacking problems involving dense packings of spheres. An appendix by Peter Lax gives 
a lovely geometric proof of the fact that the Gaussian integers form a Euclidean domain, characterizing the 
Gaussian primes, and proving that unique factorization holds there. In the process, he provides yet anoth
er glimpse into the power of a geometric approach to number theoretic problems. 

Catalog Code: NML-41/JR 168 pp., Paperbound, 2001 ISBN 088385-643-3 List: $24.95 MAA Member: $19.95 

Credit Card No. _______________ _ 

�1\.liUr<""---�-·----------------------- Slgnature ____________ Exp. Date_!_ 

Zip ______ _ 
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Teaching Rl'fll: A Guide for New Mathemsticisns 
Thomas W. Rishel 

Series: MAA Notes 
Teal!hing Fir§f 

Thortuls w. tti1M/ 

In this volume Thomas Rishel draws on his nearly forty years of 
teaching experience to address the "nuts and bolts" issues of teach
ing college mathematics. This book is written for the mathematics 
TA or young faculty member who may be wondering just where 
and how to start. Rishel opens the readers' eyes to pitfalls they may 
never have considered, and offers advice for balancing an obliga
tion "to the student" with an obligation "to mathematics." 
Throughout, he provides answers to seemingly daunting questions 
shared by most new TAs, such as how to keep a classroom active 
and lively; how to prepare writing assignments, tests, and quizzes; 
how exactly to write a letter of recommendation; and how to pace, 
minute by minute, the "mathematical talks" one will be called upon 
to give. 

This book is Rishel's answer to those who may suggest that good teaching is innate and cannot be 
taught. This he emphatically denies, and he insists that solid teaching starts with often overlooked 
"seeming trivialites" that one needs to master before exploring theories of learning. Along the way he 
also covers the general issues that teachers of all subjects eventually experience: fairness in grading, 
professionalism among students and colleagues, identifying and understanding student "types", tech
nology in the classroom. All of the subjects in this book are considered within the context of Rishel's 
experience as a mathematics teacher. All are illustrated with anecdotes and suggestions specific to the 
teaching of mathematics. 

Teaching First is a comprehensive guide for a mathematics TA, from the first semester preparations 
through the unforseen challenges of accepting a faculty position. Its aim is to prepare the new TA 
with clear suggestions for rapidly improving their teaching abilities. 

Catalog Code: NTE-54/JR 150 pp., Paperbound, 2000 ISBN 088385-165-2 List: $19.00 MAA Member: $15.00 
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Mathemat:ical ChestnUI:s from Around the World 
Ross Honsberger 

Series: Dolciani Mathematical Expositions 

From time to time great pleasure is to be had in taking a break 
from our own mathematical activities to get acquainted with the 
engaging work of others; and how gratifying it is that mathemat
ics doesn't have to be difficult or advanced to be ingenious and 
beautiful. In this miscellaneous collection of elementary gems 
you will encounter brilliant insights from many fine mathemati
cal minds. It is remarkable how much exciting mathematics 
exists at the elementary level. 

These essays are presented solely for your pleasure. No attempt is 
made to give formal instruction; in the few places where prelimi
naries are presented, it is done so only in preparation for a gem 

to follow. While a certain degree of concentration is required for the appreciation of some of 
these delights, this book aims to provide the reader with relaxing enjoyment; it's meant to be 
mathematical entertainment, not a collection of exacting studies. 

The more than 150 problems in this volume come mainly from Euclidean geometry, combina
torics and combinatorial geometry, algebra and number theory, and most of the dissuasions can 
be followed comfortably by a college freshman. 

The problems are not grouped according to subject or arranged in a particular order. Squeeze 
this book anywhere and an intriguing problem, a striking result, or an ingenious solution is sure 
to pop out. 

Catalog Code: NTE-54/IR 150 pp., Paperbound, 2000 ISBN 088385-165-2 List: $19.00 MAA Member: $15.00 
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CooperlltitJe Lssming in Undergraduate Mathematics: 
lssu• that Mstter snd Strategies that Wo'* 

Elizabeth C. Rogers, Barbara E. Reynolds, 
Neil A. Davidson, and Anthony D. Thomas, Editors 

Series: MAA Notes 
This volume offers practical suggestions and strategies both for instructors who are already 
using cooperative learning in their classes, and for those who are thinking about implementing 
it. The authors are widely experienced with bringing cooperative learning into the undergrad
uate mathematics classroom. In addition they draw on the experiences of colleagues who 
responded to a survey about cooperative learning which was conducted in 1 996-97 for Project 
CLUME (Cooperative Learning in Undergraduate Mathematics Education) .  

The volume discusses many o f  t h e  practical implementation issues involved in creating a cooperative learning environment: 

how to develop a positive social climate, form groups and prevent or resolve difficulties within and among the groups. 
what are some of the cooperative strategies (with specific examples for a variety of courses) that can be used in 
courses ranging from lower-division, to calculus, to upper division mathematics courses. 
what are some of the critical and sensitive issues of assessing individual learning in the context of a cooperative 
learning environment. 
how do theories about the nature of mathematics content relate to the views of the instructor in helping students learn 
that content. 

The authors present powerful applications of learning theory that illustrate how readers might construct cooperative learning activi
ties to harmonize with their own beliefs about the nature of mathematics and how mathematics is learned. 

In writing this volume the authors analyzed and compared the distinctive approaches they were using at their various institutions. 
Fundamental differences in their approaches to cooperative learning emerged. For example, choosing Davidson's guided-discovery 
model over a constructivist model based on Dubinsky's action-process-object-schema (APOS) theory affects one's choice of activities. 
These and related distinctions are explored. 

A selected bibliography provides a number of the major references available in the field of cooperative learning in mathematics edu
cation. To make this bibliography easier to use, it has been arranged in two sections. The first section includes references cited in the 
text and some sources for further reading. The second section lists a selection (far from complete) of textbooks and course materials 
that work well in a cooperative classroom for undergraduate mathematics students. 
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